
Regina documentation

Regina documentation ii

COLLABORATORS

TITLE :

Regina documentation

ACTION NAME DATE SIGNATURE

WRITTEN BY October 9, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Regina documentation iii

Contents

1 Regina documentation 1

1.1 Regina documentation . 1

1.2 Table Of Contents . 1

1.3 Chapter 1 . 4

1.4 Definitions . 5

1.5 Clauses . 5

1.6 Chapter 2 . 9

1.7 General Information . 10

1.8 The Syntax Format . 10

1.9 Precision and Normalization . 11

1.10 Standard Parameter Names . 11

1.11 Error Messages . 12

1.12 Possible System Dependencies . 13

1.13 Blanks vs. Spaces . 14

1.14 Rexx Standard Builtin Functions . 15

1.15 Implementation specific documentation for Regina . 43

1.16 Deviations from the Standard . 43

1.17 Interpreter Internal Debugging Functions . 43

1.18 Rexx UNIX Interface Functions . 45

1.19 Chapter 3 . 46

1.20 What are Conditions . 47

1.21 What Do We Need Conditions for? . 47

1.22 Terminology . 47

1.23 The Mythical Standard Condition . 48

1.24 Information Regarding Conditions (data structures) . 49

1.25 How to Set up a Condition Trap . 50

1.26 How to Raise a Condition . 51

1.27 How to Trigger a Condition Trap . 52

1.28 Trapping by Method SIGNAL . 53

1.29 Trapping by Method CALL . 54

Regina documentation iv

1.30 The Current Trapped Condition . 55

1.31 The Real Conditions . 55

1.32 The SYNTAX condition . 56

1.33 The HALT condition . 57

1.34 The ERROR condition . 57

1.35 The FAILURE condition . 58

1.36 The NOVALUE condition . 58

1.37 The NOTREADY condition . 59

1.38 Further Notes on Conditions . 59

1.39 Conditions under Language Level 3.50 . 60

1.40 Pitfalls when Using Condition Traps . 60

1.41 The Correctness of this Description . 60

1.42 Conditions in Regina . 62

1.43 How to Raise the HALT condition . 62

1.44 Extended builtin functions . 62

1.45 Extra Condition in Regina . 63

1.46 Various Other Existing Extensions . 63

1.47 Possible Future extensions . 64

1.48 Chapter 4 . 64

1.49 Rexx’s Notion of a . 65

1.50 Positioning within a File . 66

1.51 Persistent and Transient Streams . 67

1.52 Errors: Discovery, Handling and Recovery . 67

1.53 Naming Files . 68

1.54 Non-standard Operations on Files . 69

1.55 Where Implementations are Allowed to Differ . 69

1.56 Where Implementations might Differ anyway . 69

1.57 Typical Problems when Handling Files . 70

1.58 The Stream was Renamed During Execution . 70

1.59 LINES() and CHARS() are Inaccurate . 70

1.60 If You don’t Close Your Files . 70

1.61 Stream I/O in Regina . 71

1.62 Chapter 5 . 71

1.63 Overview of functions in SAA . 72

1.64 Include Files and Libraries . 73

1.65 Preprocessor Symbols . 73

1.66 Allocating and Deallocating Space . 73

1.67 Datastructures . 73

1.68 The RXSTRING structure . 74

Regina documentation v

1.69 The RXSYSEXIT structure . 75

1.70 The Subcommand Handler Interface . 76

1.71 What is a Subcommand Handler . 76

1.72 The RexxRegisterSubcomExe() function . 77

1.73 The RexxRegisterSubcomDll function . 78

1.74 The RexxDeregisterSubcom function . 79

1.75 The RexxQuerySubcom() function . 79

1.76 Executing Rexx Code . 80

1.77 The RexxStart() function . 80

1.78 Variable Pool Interface . 83

1.79 Symbolic or Direct . 83

1.80 The SHVBLOCK structure . 84

1.81 Regina Notes for the Variable Pool . 88

1.82 The RexxVariablePool() function . 89

1.83 The System Exit Handler Interface . 90

1.84 The System Exit Handler . 90

1.85 List of System Exit Handlers . 91

1.86 RXFUN --- The External Function Exit Handler . 91

1.87 RXCMD --- the Subcommand Exit Handler . 91

1.88 RXMSQ --- the External Data Queue Exit Handler . 93

1.89 RXSIO --- the Standard I/O Exit Handler . 93

1.90 RXHLT --- the Halt Condition Exit Handler . 94

1.91 RXTRC --- the Trace Status Exit Handler . 94

1.92 RXINI --- the Initialization Exit Handler . 94

1.93 RXTER --- the Termination Exit Handler . 94

Regina documentation 1 / 95

Chapter 1

Regina documentation

1.1 Regina documentation

Table Of Contents

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

1.2 Table Of Contents

MAIN
Regina documentation
1.
Chapter 1

1.1.
Definitions

1.2.
Clauses
2.
Chapter 2

2.1.
General Information

2.1.1.
The Syntax Format

2.1.2.
Precision and Normalization

2.1.3.
Standard Parameter Names

2.1.4.
Error Messages

2.1.5.

Regina documentation 2 / 95

Possible System Dependencies
2.1.6.

Blanks vs. Spaces
2.2.

Rexx Standard Builtin Functions
2.3.

Implementation specific documentation for Regina
2.3.1.

Deviations from the Standard
2.3.2.

Interpreter Internal Debugging Functions
2.3.3.

Rexx UNIX Interface Functions
3.
Chapter 3

3.1.
What are Conditions

3.1.1.
What Do We Need Conditions for?

3.1.2.
Terminology

3.2.
The Mythical Standard Condition

3.2.1.
Information Regarding Conditions (data structures)

3.2.2.
How to Set up a Condition Trap

3.2.3.
How to Raise a Condition

3.2.4.
How to Trigger a Condition Trap

3.2.5.
Trapping by Method SIGNAL

3.2.6.
Trapping by Method CALL

3.2.7.
The Current Trapped Condition

3.3.
The Real Conditions

3.3.1.
The SYNTAX condition

3.3.2.
The HALT condition

3.3.3.
The ERROR condition

3.3.4.
The FAILURE condition

3.3.5.
The NOVALUE condition

3.3.6.
The NOTREADY condition

3.4.
Further Notes on Conditions

3.4.1.
Conditions under Language Level 3.50

3.4.2.
Pitfalls when Using Condition Traps

Regina documentation 3 / 95

3.4.3.
The Correctness of this Description

3.5.
Conditions in Regina

3.5.1.
How to Raise the HALT condition

3.5.2.
Extended builtin functions

3.5.3.
Extra Condition in Regina

3.5.4.
Various Other Existing Extensions

3.6.
Possible Future extensions
4.
Chapter 4

4.1. Rexx’s Notion of a
4.2.

Positioning within a File
4.3.

Persistent and Transient Streams
4.4.

Errors: Discovery, Handling and Recovery
4.5.

Naming Files
4.6.

Non-standard Operations on Files
4.7.

Where Implementations are Allowed to Differ
4.8.

Where Implementations might Differ anyway
4.9.

Typical Problems when Handling Files
4.9.1.

The Stream was Renamed During Execution
4.9.2.

LINES() and CHARS() are Inaccurate
4.9.3.

If You don’t Close Your Files
4.10.

Stream I/O in Regina
5.
Chapter 5

5.1.
Overview of functions in SAA

5.1.1.
Include Files and Libraries

5.1.2.
Preprocessor Symbols

5.1.3.
Allocating and Deallocating Space

5.2.
Datastructures

5.2.1.
The RXSTRING structure

5.2.2.
The RXSYSEXIT structure

Regina documentation 4 / 95

5.3.
The Subcommand Handler Interface

5.3.1.
What is a Subcommand Handler

5.3.2.
The RexxRegisterSubcomExe() function

5.3.3.
The RexxRegisterSubcomDll function

5.3.4.
The RexxDeregisterSubcom function

5.3.5.
The RexxQuerySubcom() function

5.4.
Executing Rexx Code

5.4.1.
The RexxStart() function

5.5.
Variable Pool Interface

5.5.1.
Symbolic or Direct

5.5.2.
The SHVBLOCK structure

5.5.3.
Regina Notes for the Variable Pool

5.5.4.
The RexxVariablePool() function

5.6.
The System Exit Handler Interface

5.6.1.
The System Exit Handler

5.6.2.
List of System Exit Handlers

5.6.3.
RXFUN --- The External Function Exit Handler

5.6.4.
RXCMD --- the Subcommand Exit Handler

5.6.5.
RXMSQ --- the External Data Queue Exit Handler

5.6.6.
RXSIO --- the Standard I/O Exit Handler

5.6.7.
RXHLT --- the Halt Condition Exit Handler

5.6.8.
RXTRC --- the Trace Status Exit Handler

5.6.9.
RXINI --- the Initialization Exit Handler

5.6.10.
RXTER --- the Termination Exit Handler

1.3 Chapter 1

REXX SYNTAX

In this chapter, the syntax of Rexx keywords are explained. At the end of the

Regina documentation 5 / 95

chapter is a section describing how Regina may differ from standard Rexx as
it is described in the first part of this chapter.

Definitions

Clauses

1.4 Definitions

variablelist is a space list of one or more variables, which may be simple
symbols, stem symbols or compound symbols.

1.5 Clauses

ADDRESS [environment [command]]
[[VALUE] expression]

The ADDRESS keyword controls where external environment commands are sent.
If both environment and command are specified, the given command will be
executed in the given environment. The effect is the same as issuing an
expression to be executed as a command, except that the environment in which
it is to be executed can be explicitly specified in the ADDRESS clause.
The environment term must be a symbol or a literal string. Even if it is a
symbol, it will not be expanded. command can be any Rexx expression.

Rexx maintains a list of environments, of size two. If you select a new
environment, it will be put in the front of this list, possible squeezing the
backend environment out of the list. Note that if command is specified, the
contents of the environment stack will never be changed. If you omit command,
environment will always be put at the top of the stack.

What happends if you specify an environment that is already in the list
seems to be implementation dependent. Strictly speaking, you should end up
with both entries in the list pointing to the same environment, but some
implementations will probably handle this by reordering the list, leaving the
selected envionment in the front. In these implementations.

If you don’t specify any subkeywords or parameters to ADDRESS, the effect is
to swap the two first entries in the list. Consequently, executing ADDRESS
can be used to toggle between to different environments.

The second form of ADDRESS is just a special case of the first form when
command is omitted. If the first word after ADDRESS is VALUE, then the rest
of the clause is interpreted as being an expression, which result names
the environment which is to be made the current default environment. Using
VALUE makes it possible to circumvent the restriction that the name of the
new environment must be a symbol or a literal string. It is, however, not
possible to combine both VALUE and command in a single clause.

Regina documentation 6 / 95

To further complicate things, the VALUE keyword may be omitted if the
expression (supposing there is one) following ADDRESS starts with a special
character which isn’t allowed in environment names. Confused? Let’s look at
some examples:

ADDRESS COMMAND ADDRESS SYSTEM ’copy’ fromfile tofile
ADDRESS SYSTEM
ADDRESS VALUE newenv
ADDRESS
ADDRESS (oldenv)

The first of these sets the environment COMMAND as the current default
environment. The second performs the command copy in the environment SYSTEM,
given the values of the symbols fromfile and tofile as parameters. Note that
this will not set SYSTEM as current default environment. The third example
sets SYSTEM as current default environment. The fourth example sets as the
current default environment the contents of the symbol newenv, pushing SYSTEM
down one level in the stack. The fifth clause swap the two uppermost entries
on the stack; and SYSTEM ends up at the top. The last example sets the
current default environment to whatever the value of the symbol oldenv is.

Let’s look a bit closer at the last example. Note the differences between the
two clauses:

ADDRESS OLDENV
ADDRESS (OLDENV)

The first of these sets the current default environment to "OLDENV",
while the second sets it to the value of the symbol OLDENV. Actually, in
the latter, the subkeyword VALUE has been omitted, which is legal since the
parameter starts with a special character.

If you are still confused, don’t panic; the syntax of ADDRESS is somewhat
bizarre, and you should not put too much effort into learning all aspects of
it. Just make sure that you understand how to use it in simple situations.
Changes are that you will not have use for its more complicated variants for
quite some time.

Then, what names are legal as environments? Well, that is implementation
specific, but some names seems to be in common use. The name COMMAND
is sometimes used to refer to an environment that sends command to the
operating system. Likewise, the name of the operating system is often used
for this (CMS, UNIX, etc). You have to consult the inplementation specific
documentation for more information about this. Actually, there is not
really any restriction on what constitues a legal environment name (also the
nullstring is legal).

Nor does the definition of Rexx say anything about which environment is
preselected when you invoke the interpreter. In extreme cases you might not
even have an environment available before you have executed the first ADDRESS
clause.

The list of enviroments will be saved across subroutine calls; so the effect
of any ADDRESS clauses in the subroutine will cease at return from the
subroutine.

Regina documentation 7 / 95

ARG [template]

The ARG clause will parse the argumentstrings at the current procedureal
level into the template. Parsing will be performed in upper case mode. This
clause is identical to:

PARSE UPPER ARG [template]

For more information, see the PARSE clause.

CALL symbol [parameter] [, [parameter] ...]

Transfer control to the statement suceeding the label symbol. Before control
is transferred, the special variable SIGL is set to the linenumber of
the CALL-statement. Control is later returned when a RETURN-statement is
executed.

DO [repetitor] [conditional] ; [statements ;] END [symbol]

repetitor symbol = expri [TO exprt] [BY exprb] [FOR exprf]
exprr
FOREVER

conditional = WHILE exprw
UNTIL expru

The DO statement is the statement used for looping and grouping several
statements into one block. The most simple case is when there is no repetitor
or conditional, in which case it works like BEGIN/END in Pascal or f...g in C.

The repetitor controls the controlvariable of the loop, or the number of
repetitions. exprr may specify a certain number of repetitions, or you might
use FOREVER to go on looping forever.

If you specify the controlvariable symbol, it will get the initial value
expri at the start of the loop. At the start of each new iteration it will be
checked if it has reached the value exprt. At the end of each iteration the
value exprb is added to the controlvariable. The loop will terminate after
exprf iterations.

You may also specify UNTIL or WHILE, which take a boolean expression. WHILE
is checked before each iteration, UNTIL is checked after each iteration.

The FOREVER keyword is only needed when there is no conditional, and the
repetitor would also be empty if FOREVER was not specified. The TO, BY and
FOR may come in any order.

DROP variable [variable ...]

Makes the named variables undefined.

EXIT [expr]

Regina documentation 8 / 95

Terminates the program, and returns expr to the caller.

The Standard says that this can be any string, and that if no expr is
specified, nothing is returned to the caller. In UNIX the expr must be an
integer, and zero is assumed in the absence of an expr.

IF expr [;] THEN [;] statement [ELSE [;] statement]

A perfectly normal IF statement.

INTERPRET [expr]

ITERATE [symbol]

This statement will iterate the innermost loop, or the loop having symbol as
control variable. The simple DO/END statements without a repetitor and/or
conditional are not effected by ITERATE. The effect of an ITERATE is to
imediately transfer control to the END statement of that loop, so that the
next iteration (if any) of the loop can be started.

Two types of errors can occur. Either symbol does not refer to any loop
active in the current scope, or then (if symbol is not specified) there
does not exist any loops in the current scope. Both errors are reported with
errorcode 28 ("Invalid LEAVE or ITERATE").

LEAVE [symbol]

This statement will leave the innermost loop, or the loop having symbol as
control variable. As for scope, errors and functionality, it is identical to
ITERATE, except that LEAVE terminates the loop, while ITERATE lets the loop
start on the next iteration.

NOP

The "No OPeration" statement, it does not do anything.

NUMERIC DIGITS [expr]
FORM [SCIENTIFIC | ENGINEERING | [VALUE] expr]
FUZZ [expr]

OPTIONS expr

PARSE [UPPER] type [template]

type = [ARG | LINEIN | PULL | SOURCE | VERSION]
VALUE [expr] WITH
VAR symbol

Regina documentation 9 / 95

PROCEDURE [EXPOSE variablelist]

PULL [template]

This statement will pull a line from the top of the stack and parse it into
the variables in the template. It will also translate the contents of the
line to uppercase.

This statement is equivalent to "PARSE UPPER PULL [template]".

PUSH [expr]

This statement will push a new line onto the top of the stack. The contents
of the line will be determined by the optional expression of the statement.

QUEUE [expr]

RETURN [expr]

SAY [expr]

Writes out the value of expr, terminated by a CRLF. If expr is not specified,
it will write out an empty line.

SELECT ; whenpart ... [OTHERWISE [;] [statements]] END

whenpart : WHEN expr [;] THEN [;] statement

SIGNAL label
[VALUE] expr
{ ON | OFF } condition [NAME handler]

TRACE [setting | [VALUE] expr]

1.6 Chapter 2

REXX BUILTIN FUNCTIONS

This chapter describes the Rexx library of builtin functions. It is divided
into three parts:

1. First a general introduction to builtin functions, pointing out concepts,
fitfalls, parameter conventions, pecularities, and possible system
dependencies.

Regina documentation 10 / 95

2. Then there is the reference section, which describes in detail each
function in the builtin library.

3. At the end, there is documentation that describes where and how Regina
differs from standard Rexx, as described in the two other sections. It
also lists Reginas extensions to the builtin library.

It is recommended that you read the first part on first on first reading of
this documentation, and that you use the second part as reference. The third
part is only relevant if you are going to use Regina.

General Information

Rexx Standard Builtin Functions

Implementation specific documentation for Regina

1.7 General Information

This section is an introduction to the builtin functions. It ←↩
describes common

behavior, parameter conventions, concepts and list possible system-dependent
parts.

The Syntax Format

Precision and Normalization

Standard Parameter Names

Error Messages

Possible System Dependencies

Blanks vs. Spaces

1.8 The Syntax Format

In the description of the builtin functions, the syntax of each one is
listed. For each of the syntax diagrams, the parts written in italic font
names the parameters. Terms enclosed in [square brackets] denote optional
elements. And the courier font is used to denote that something should be
written as is, and it is also used to mark output from the computer.

Note that in standard Rexx it is not really allowed to let the last possible
parameter be empty if all commas are included, although some implementations
allow it. In the following calls:

Regina documentation 11 / 95

say D2X(61)
say D2X(61, 1)
say D2X(61,)

the two first return the string consisting of a single character A, while the
last should return error. If the last argument of a function call is omitted,
you can not safely include the immediately preceding comma.

1.9 Precision and Normalization

The builtin library uses its own internal precision for whole numbers, which
is the range plus/minus 999999999. That is probably far more than you will
ever need in the builtin functions. For most functions, neither parameters
nor return values will be effected by any setting of NUMERIC. In the few
cases where this does not hold, it is explicitly stated in the description of
the function.

In general, only parameters that are required to be whole numbers are used in
the internal precision, while numbers not required to be whole numbers are
normalized according to the setting of NUMERIC before use. But of course, if
a parameter is a numeric expression, that expression will be calculated and
normalized under the settings of NUMERIC before it is given to the function
as a parameter.

1.10 Standard Parameter Names

In the descriptions of the builtin functions, several generic names are
used for parameters, to indicate something about the type and use of that
parameter, e.g. valid range. To avoid repeating the same information for the
majority of the functions, some common "rules" for the standard parameter
names are stated here. These rules implicitly apply for the rest of this
chapter.

Note that the following list does not try to classify any general Rexx
"datatypes", but provides a binding between the sub-datatypes of strings
and the methology used when naming parameters.

* Length is a non-negative whole number within the internal precision of
the builtin functions. Whether it denotes a length in characters or in
words, depends on the context.

* String can be any normal character string, including the nullstring.
There are no further requirements for this parameter. Sometimes a string
is called a "packed string" to explicitly show that it usually contains
more than the normal printable characters.

* Option is used in some of the functions to choose a particular action,
e.g. in DATE() to set the format in which the date is returned. Ev-
erything except the first character will be ignored, and case does not
matter. note that the string should concequently not have any leading

Regina documentation 12 / 95

space.

* Start is a positive whole number, and denotes a start position in
e.g. a string. Whether it refers to characters or words depends on the
context. The first position is always numbered 1, unless explicitly
stated otherwise in the documentation. Note that when return values
denotes positions, the number 0 is generally used to denote a nonexistent
position.

* Padchar must be a string, exactly one character long. That character is
used for padding.

* Streamid is a string that identifies a Rexx stream. The actual contents
and format of such a string is implementation dependant.

* Number is any valid Rexx number, and will be normalized according to the
settings of NUMERIC before it is used by the function.

If you see one of these names having a number appended, that is only to
separate several parameters of the same type, e.g. string1, string2 etc.
They still follow the rules listed above. There are several parameters in the
builtin functions that do not easily fall into the categories above. These
are given other names, and their type and functionality will be described
together with the functions in which they occur.

1.11 Error Messages

There are several errors that might occur in the builtin functions. Just one
error message is only relevant for all the builtin functions, that is number
40 (Incorrect call to routine). In fact, an implementation of Rexx can choose
to use that for any problem it encounters in the builtin functions.

Depending on the implementation, other error messages might be used as well.
Error message number 26 (Invalid whole number) might be used for any case
where a parameter should have been a whole number, or where a whole number
is out of range. It is implided that this error message can be used in these
situations, and it is not explicitly mentioned in the description of the
functions.

Other general error messages that might be used in the builtin functions
are error number 41 (Bad arithmetic conversion) for any parameter that
should have been a valid Rexx number. The error message 15 (Invalid binary
or hexadecimal string) might occur in any of the converions routines that
converts from binary or hexadecimal format (B2X(), X2B(), X2C(), X2D()).
And of course the more general error messages like error message 5 (Machine
resources exhausted) can occur.

Generally, it is taken as granted that these error messages might occur
for any relavent builtin function, and this will not be restated for each
function. When other error messages than these are relevant, it will be
mentioned in the text.

In Rexx, it is in general not an error to specify a start position that is
larger than the length of the string, or a length that refers to parts of a

Regina documentation 13 / 95

string that is beyond the end of that string. The meaning of such instances
will depend on the context, and are described for each function.

1.12 Possible System Dependencies

Some of the functions in the builtin library are more or less system or
implementation dependent. The functionality of these may vary, so you should
use defencive programming and be prepared for any sideeffects that they might
have. These functions include:

* ADDRESS() is dependant on your operating system and the implementation of
Rexx, since there is not standard for naming environments.

* ARG() at the main level (not in subroutines and functions) is dependant
on how your implementation handles and parses the parameters it got from
the operating system.

* BITAND(), BITOR() and BITXOR() are dependant on the character set of
your machine. Seemingly identical parameters will in general return very
different results on ASCII and EBCDIC machines. Results will be identical
if the parameter was given to these functions as a binary or hexadecimal
literal.

* C2X(), C2D(), D2C() and X2C() will be effected by the character set of
your computer since they convert to or from characters. Note that if
C2X() and C2D() get their first parameter as a binary or hexadecimal
literal, the result will be uneffected by the machine type. Also note
that the functions B2X(), X2B(), X2D() and D2X() are not effected by the
character set, since they do not use character representation.

* CHARIN(), CHAROUT(), CHARS(), LINEIN(), LINEOUT(), LINES() and STREAM()
are the interface to the filesystem. They might have system dependant
pecularities in several ways. Firstly, the naming of streams is very
dependant on the operating system. Secondly, the operation of stream is
very dependent on both the operating system and the implementation. You
can safely assume very little about how streams behave, so carefully read
the documentation for your particular implementation.

* CONDITION() is dependant on the condition system, which in turn depends
on such implementation dependant things as file I/O and execution of
commands. Although the general operation of this function will be fairly
equal among systems, the details may differ.

* DATATYPE() and TRANSLATE() know how to recognize upper and lower case
letters, and how to transform letters to upper case. If your Rexx
implementation supports national character sets, the operation of these
two functions will depend on the language choosen.

* DATE() has the options Month, Weekday and Normal, which produce the name
of the day or month in text. Depending on how your implementation handles
national character sets, the result from these functions might use the
correct spelling of the currently choosen language.

* DELWORD(), SUBWORD(), WORD(), WORDINDEX(), WORDLENGTH(), WORDPOS() and

Regina documentation 14 / 95

WORDS() requires the concept of a "word", which is defined as a non-
blank characters separated by blanks. However, the interpretation of what
is a blank character depends upon the implementation.

* ERRORTEXT() might have slightly different wordings, depending on the
implementation, but the meaning and numbering should be the same.
However, note that some implementations may have additional error
messages, and some might not follow the standard numbering.

* QUEUED() refers to the system specific concept of a "stack", which is
external to Rexx. The result of this function may therefore be dependant
on how the stack is implemented on your system.

* RANDOM() will differ from machine to machine, since the algorithm is
implementation dependant. If you set the seed, you can safely assume
that the same interpreter under the same operating system and on the same
hardware platform will return a reproduceable sequence. But if you change
to another interpreter, another machine or even just another version of
the operating system, the same seed might not give the same pseudo-random
sequence.

* SOURCELINE() has been changed between Rexx language level 3.50 and 4.00.
In 4.00 it can return 0 if the Rexx implementation finds it necessary,
and any request for a particular line may get a nullstring as result.
Before assuming that this function will return anything useful, consult
the documentation.

* TIME() will differ somewhat on different machines, since it is dependent
on the underlaying operating system to produce the timing information. In
particular, the granularity and accuracy of this information may vary.

* VALUE() will be dependant on implementation and operating system if it
is called with its third parameter specified. Consult the implementation
specific documentation for more information about how each implementation
handles this situation.

* XRANGE() will return a string, which contents will be dependent on
the character set used by your computer. You can safely make very few
assumptions about the visual representation, the length, or the character
order of the string returned by this function.

As you can see, even Rexx interpreters that are within the standard can
differ quite a lot in the builtin library. Although the points listed above
seldom are any problem, you should never assume anything about them before
you have read the implementation specific documentation. Failure to do so
will give you surprises sooner or later.

And, by the way, many implementations (probably the majority) do not follow
the standard completely. So, in fact, you should never assume anything at
all. Sorry ...

1.13 Blanks vs. Spaces

Regina documentation 15 / 95

Note that the description differs between "blanks" and the space character.
A blank is any character that might be used as "whitespace" to separate
text into groups of characters. The space character is only one of several
possible blanks. When this text says "blank" it means any one from a set
of characters that are used to separate visual characters into words. When
this text says space, it means one particular blank, that which is generally
binded to the spacebar on a normal computer keyboard.

All implementation can be trusted to treat the space character as blank.
Additional characters that might be interpreted as blanks are tab (horizontal
tabulator), ff (formfeed), vt (vertical tabulator), nl (newline) and cr
(carriage return). The interpretation of what is blank will vary between
machines, operating systems and interpreters. If you are using support for
national character sets, it will even depend on the language selected. So
be sure to check the documentation before you assume anything about blank
characters.

Some implementations use only one blank character, and perceives the set of
blank characters as equivalent to the space character. This will depend on
the implementation, the character set, the customs of the operating system
and various other reasons.

1.14 Rexx Standard Builtin Functions

Below follows an in depth description of all the functions in the library of
builtin functions. Note that only the standard Rexx functions is included.
The extended functions available in some implementations are not described
here.

ABBREV(long,short[,length])

Returns 1 if the string short is strictly equal to the initial first part
of the string long, and returns 0 otherwise. The minimum length which short
must have, can be specified as length. If length is unspecified, no minimum
restrictions for the length of short applies, and thus the nullstring is an
abbreviation of any string.

Note that this function is case sensitive, and that leading and trailing
spaces are not stripped off before the two strings are compared.

ABBREV(’Foobar’, ’Foo’) -> 1
ABBREV(’Foobar’, ’Foo’, 4) -> 0 /* Too short */
ABBREV(’Foobar’, ’foo’) -> 0 /* Different case */

ABS(number)

Returns the absolute value of the number, which can be any valid Rexx number.
Note that the result will be normalized according to the current setting of
NUMERIC.

ABS(-42) -> 42
ABS(100) -> 100

Regina documentation 16 / 95

ADDRESS()

Returns the current default environment to which commands are sent. The value
is set with the ADDRESS clause, for more information, see documentation on
that clause.

ADDRESS() -> UNIX /* Maybe */

ARG([argno[,option]])

Returns information about the arguments of the current procedure level. For
subroutines and functions it will refer to the arguments with which they were
called. For the "main" program it will refer to the arguments used when the
Rexx interpreter was called.

Note that in under some operating systems, Rexx scripts are run by starting
a the rexx interpreter as a program, giving it the name of the script to
be executed as parameter. Then then Rexx interpreter might process the
commandline and "eat" some or all of the arguments and options. Therefore,
the result of this function at the main level is implementation dependant.
The parts of the command line which are not available to the Rexx script
might for instance be the options and arguments meaningful only to the
interpreter itself.

Also note that how the interpreter on the main level divides the parameter
line into individual arguments, is implementation dependent. The standard
seems to define that the main procedure level can only get one parameter
string, but don’t count on it.

For more information on how the interpreter processes arguments when called
from the operating system, see the documentation on how to run a Rexx script.

When called without any parameters, ARG() will return the number of comma-
delimited arguments. Unspecified (omitted) arguments at the end of the call
are not counted. Note the difference between using comma and using space to
separate strings. Only comma-separated arguments will be interpreted by Rexx
as different arguments. Space-separated strings are interpreted as different
parts of the same argument.

Argno must be a positive whole number. If only argno is specified, the
argument specified will be returned. The first argument is numbered 1. If
argno refers to an unspecified argument (either omitted or argno is greater
than the number of arguments), a nullstring is returned.

If option is also specified, the return value will be 1 or 0, depending on
the value of option and on whether the numbered parameter was specified or
not. Option can be:

O (Omitted) Returns 1 if the numbered argument was omitted or unspecified.
Otherwise, 0 is returned.

E (Existing) Returns 1 if the numbered argument was specified, and 0
otherwise.

Regina documentation 17 / 95

If called as: CALL FUNCTION ’This’ ’is’, ’a’,, ’test’,,

ARG() -> 4 /* Last parameter ommitted */
ARG(1) -> ’This is’
ARG(2) -> ’a’
ARG(3) -> "
ARG(9) -> " /* Ninth parameter nonexisting */
ARG(2,’E’) -> 1
ARG(2,’O’) -> 0
ARG(3,’E’) -> 0 /* Third parameter ommitted */
ARG(9,’O’) -> 1

B2X(binstring)

Takes a parameter which is interpreted as a binary string, and returns a
hexadecimal string which represent the same infomation. Binstring can only
contain the binary digits 0 and 1. To increase readability, blanks may be
included in binstring to group the digits into groups. Each such group must
have a multiple of four binary digits, except from the first group. If the
number of binary digits in the first group is not a multiple of four, that
group is padded at the left with up to three leading zeros, to make it a
multiple of four. Blanks can only occur between binary digits, not as leading
or trailing characters.

Each group of four binary digits is translated into on hexadecimal digit in
the output string. There will be no extra blanks in the result, and the upper
six hexadecimal digits are in upper case.

B2X(’0010 01011100 0011’) -> ’26C3’
B2X(’10 0101 11111111’) -> ’26FF’
B2X(’0100100 0011’) -> ’243’

BITAND(string1[,[string2][,padchar]])

Returns the result from bytewise applying the operator AND to the characters
in the two strings string1 and string2. Note that this is not the logical AND
operation, but the bitwise AND operation. String2 defaults to a nullstring.
The two strings are left-justified; the first characters in both strings will
be AND’ed, then the second characters and so forth.

The behavior of this function when the two strings do not have equal length
is defined by the padchar character. If it is udefined, the remaining part
of the longer string is appended to the result after all characters in the
shorter srting have been processed. If padchar is defined, each char in the
remaining part of the longer string is logically AND’ed with the padchar (or
rather, the shorter string is padded on the right length, using padchar).

When using this function on character strings, e.g. to uppercase or lowercase
a string, the result will be dependant on the character set used. To
lowercase a string in EBCDIC, use BITAND() with a padchar value of ’bf’x. To
do the same in ASCII, use BITOR() with a padchar value of ’20’x.

BITAND(’123456’x, ’3456’x) -> ’101456’x
BITAND(’foobar’,, ’df’x) -> ’FOOBAR’ /* For ASCII */
BITAND(’123456’x, ’3456’x, ’f0’x) -> ’101450’x

Regina documentation 18 / 95

BITOR(string1[,[string2][,padchar]])

Works like BITAND(), except that the logical function OR is used instead of
AND. For more information see BITAND().

BITOR(’123456’x, ’3456’x) -> ’367656’x
BITOR(’FOOBAR’,, ’20’x) -> ’foobar’ /* For ASCII */
BITOR(’123456’x, ’3456’x, ’f0’x) -> ’3676F6’x

BITXOR(string1[,[string2][,padchar]])

Works like BITAND(), except that the logical function XOR (exclusive OR) is
used instead of AND. For more information see BITAND().

BITXOR(’123456’x, ’3456’x) -> ’266256’x
BITXOR(’FooBar’,, ’20’x) -> ’fOObAR’ /* For ASCII */
BITXOR(’123456’x, ’3456’x, ’f0’x) -> ’2662A6’x

C2D(string[,length])

Returns an whole number, which is the decimal representation of the packed
string string, interpreted as a binary number. If length (which must be a
non-negative whole number) is specified, it denotes the number of characters
in string to be converted, and string is interpreted as a two’s complement
representation of a binary number, consisting of the length rightmost
characters in string. If length is not specified, string is interpreted as an
unsigned number.

If length is larger than the length of string, string is sign-extended on the
left. I.e. if the most significant bit of the leftmost char of string is set,
string is padded with ’ff’x chars at the left side. If the bit is not set,
’00’x chars are used for padding.

If length is too short, only the length rightmost characters in string are
considered. Note that this will not only in general change the value of the
number, but it might even change the sign.

Note that this function is very dependant on the character set that your
computer is using.

If it is not possible to express the final result as a whole number under
the current settings of NUMERIC DIGITS, an error is reported. The number to
be returned will not be stored in the internal representation of the builtin
library, so size restrictions on whole numbers that generally applies for
builtin functions, do not apply in this case.

C2D(’foo’) -> ’6713199’ /* For ASCII machines */
C2D(’103’x) -> ’259’
C2D(’103’x,1) -> ’3’
C2D(’103’x,2) -> ’259’
C2D(’0103’x,3) -> ’259’
C2D(’ffff’x,2) -> ’-1’
C2D(’ffff’x) -> ’65535’

Regina documentation 19 / 95

C2D(’ffff’x,3) -> ’65535’
C2D(’fff9’x,2) -> ’-6’
C2D(’ff80’x,2) -> ’-128’

C2X(string)

Returns a string of hexadecimal digits that represents the character string
string. Converting is done bytewise, the six highest hexadecimal digits are
in uppercase, and there are no blank characters in the result Leading zeros
are not stripped off in the result. Note that the behavior of this function
is dependant on the character set that your computer is running (e.g. ASCII
or EBCDIC).

C2X(’ffff’x) -> ’FFFF’
C2X(’Abc’) -> ’416263’ /* For ASCII Machines */
C2X(’1234’x) -> ’1234’
C2X(’011 0011 1101’b) -> ’033D’

CENTER(string,length[,padchar])
CENTRE(string,length[,padchar])

This function has two names, to support both American and British spelling.
It will center string in a string total of length length characters. If
length (which must be a non-negative wholenumber) is greater than the length
of string, string is padded with padchar or space if padchar is unspecified.
If length is smaller than the length of string character will be removed.

If possible, both ends of string receives (or loses) the same number of
characters. If an odd number of characters are to be added (or removed), one
character more is added to (or removed from) the right end than the left end
of string.

CENTER(’Foobar’,10) -> ’ Foobar ’
CENTER(’Foobar’,11) -> ’ Foobar ’
CENTRE(’Foobar’,3) -> ’oob’
CENTER(’Foobar’,4) -> ’ooba’
CENTER(’Foobar’,10,’*’) -> ’**Foobar**’

CHARIN([streamid][,[start][,length]])

This function will in general read characters from a stream, and return
a string containing the characters read. The streamid parameter names a
particular stream to read from. If it is unspecified, the default input
stream is used.

The start parameter specifies a character in the stream, on which to start
reading. Before anything is read, the current read position is set to that
character, and it will be the first character read. If start is unspecified,
no repositioning will be done. Independant of any conventions of the
operating system, the first character in a stream is always numbered 1. Note
that transient streams do not allow repositioning, and an error is reported
if the start parameter is specified for a transient stream.

The length parameter specifies the number of characters to read. If the

Regina documentation 20 / 95

reading did work, the return string will be of length length. There are no
other ways to how many characters were read than checking the length of the
return value. After the read, the current read position is moved forward as
many characters as was read. If length is unspecified, it defaults to 1. If
length is 0, nothing is read, but the file might still be reposisioned if
start was specified.

Note that this function read the stream raw. Some operating systems use
special characters to differ between separate lines in text files. On these
systems these special characters will be returned as well. Therefore, never
assume that this function will behave identical for text streams on different
systems.

What happens when an error occurs or the End-Of-File (EOF) is seen during
reading, is implementation dependant. The implementation may choose to set
the NOTREADY condition (does not exist in Rexx language level 3.50). For more
information, se chapter on stream I/O.

(Assuming that the file "/tmp/file" contains the first line: "This is the
first line"):

CHARIN() -> ’F’ /* Maybe */
CHARIN(,,6) -> ’Foobar’ /* Maybe */
CHARIN(’/tmp/file’,,6) -> ’This i’
CHARIN(’/tmp/file’,4,6) -> ’s is t’

CHAROUT([streamid][,[string][,start]])

In general this function will write string to a streamid. If streamid is not
specified the default output stream will be used.

If start is specified, the current write position will be set to the startth
character in streamid, before any writing is done. Note that the current
write position ca not be set for transient streams, and attempts to do so
will report an error. Independant of any conventions that the operating
system might have, the first character in the stream is numbered 1. If start
is not specified, the current write position will not be changed before
writing.

If string is omitted, nothing is written, and the effect is to set the
current write position if start is specified. If neither string nor start
is specified, the implementation can really do whatever it likes, and many
implementations use this operation to close the file, or flush any changes.
Check implementation specific documentation for more info.

The return value is the number of characters in string that was not suc-
cessfully written, so 0 denotes a succesful write. Note that in many Rexx
implementations there is no need to open a stream; it will be implicitly
opened when it is first used in a read or write operation.

(Assuming the file referred to by outdata was empty, it will contain the
string FoobWow afterwards. Note that there might will not be an End-Of-Line
marker after this string, it depends on the implementation.)

CHAROUT(, ’Foobar’) -> ’0’
CHAROUT(outdata, ’Foobar’) -> ’0’

Regina documentation 21 / 95

CHAROUT(outdata, ’Wow’, 5) -> ’0’

CHARS([streamid])

Returns the number of characters left in the named streamid, or the default
input stream if streamid is unspecified. For transient streams this will
always be either 1 if more characters are available, or 0 if the End-Of-File
condition has been met. For persistent streams the number of remaining bytes
in the file will be possible to calculate and the true number of remaining
bytes will be returned.

However, on some systems, it is difficult to calculate the number of
characters left in a persistent stream; the requirements to CHARS() has
therefore been relaxed, so it can return 1 instead of any number other than
0. If it returns 1, you can therefore not assume anything more than that
there is at least one more character left in the input stream.

CHARS() -> ’1’ /* more data on defailt input stream */
CHARS() -> ’0’ /* EOF for default input stream */
CHARS(’outdata’) -> ’94’ /* maybe */

COMPARE(string1,string2[,padchar])

This function will compare string1 to string2, and return a whole number
which will be 0 if they are equal, otherwise the position of the first
character at which the two strings differ is returned. The comparisation is
case-sensitive, and leading and trailing space do matter.

If the strings are of unequal length, the shorter string will be padded at
the right hand end with the padchar character to the length of the longer
string before the comparation. If a padchar is not specified, space is used.

COMPARE(’FooBar’, ’Foobar’) -> ’4’
COMPARE(’Foobar’, ’Foobar’) -> ’0’
COMPARE(’Foobarrr’, ’Fooba’) -> ’6’
COMPARE(’Foobarrr’, ’Fooba’, ’r’) -> ’0’

CONDITION([option])

Returns information about the current trapped condition. A condition becomes
the current trapped condition when a condition handler is called (by CALL or
SIGNAL) to handle the condition. The parameter option specifies what sort of
information to return:

C (Condition) The name of the current trapped condition is return, this
will be one of the condition named legal to SIGNAL ON, like SYNTAX, HALT,
NOVALUE, NOTREADY, ERROR or FAILURE.

D (Description) A text describing the reason for the condition. What to put
into this variable is implementation and system dependant.

I (Instruction) Returns either CALL or SIGNAL, depending on which method
was current when the condition was trapped.

Regina documentation 22 / 95

S (State) The current state of the current trapped condition. This can
be one of ON, OFF or DELAY. Note that this option reflect the current
state, which may change, not the state at the time when the condition was
trapped.

For more information on conditions, consult the chapter 3. Note that
condition may in several ways be dependant on the implementation and system,
so read system and implementation dependant information too.

COPIES(string,copies)

Returns a string with copies concatenated copies of string. Copies must be a
non-negative whole number. No extra space is added between the copies.

COPIES(’Foo’, 3) -> ’FooFooFoo’
COPIES(’*’, 16) -> ’****************’
COPIES(’Bar ’, 2) -> ’Bar Bar ’
COPIES(", 10000) -> "

DATATYPE(string[,option])

With only one parameter, this function identifies the "datatype" of
string. The value returned will be "NUM" if string is a valid Rexx number.
Otherwise, "CHAR" is returned. Note that the interpretation of whether
string is a valid number will depend on the current setting of NUMERIC.

If option is specified too, it will check if string is of a particular
datatype, and return either "1" or "0" depending on whether string is
or is not, respectively, of the specified datatype. The possible values of
option are:

A (Alphanumeric) Consisting of only alphabetic characters (in upper, lower
or mixed case) and decimal digits.

B (Binary) Consisting of only the two binary digits 0 and 1. Note that
blanks are not allowed within string, as would have allowed been within a
binary string.

L (Lower) Consisting of only alphabetic characters in lower case.

M (Mixed) Consisting of only alphabetic characters, but the case does not
matter (i.e. upper, lower or mixed.)

N (Numeric) If string is a valid Rexx number, i.e. DATATYPE(string) would
return NUM.

S (Symbolic) Consists of characters that are legal in Rexx symbols. Note
that this test will pass several strings that are not legal symbols. The
characters includes plus, minus and the decimal point.

U (Upper) Consists of only upper case alphabetic characters.

W (Whole) If string is a valid Rexx whole number under the current setting
of NUMERIC. Note that 13.0 is a whole number since the decimal part is
zero, while 13E+1 is not a whole number, since it must be interpreted as

Regina documentation 23 / 95

130 plus/minus 5.

X (Hexadecimal) Consists of only hexadecimal digits, i.e. the decimal
digits 0-9 and the alphabetic characters A-F in either case (or mixed.)
Note that blanks are not allowed within string, as it would have been
within a hexadecimal string.

If you want to check whether a string is suitable as a variable name, you
should consider using the SYMBOL() function instead, since the Symbolic
option only verifies which characters string contains, not the order. You
should also take care to watch out for lower case alphabetic characters,
which are allowed in the tail of a compound symbol, but not in a simple or
stem symbol or in the head of compound symbol.

Also note that the behavior of the options A, L, M and U might depend on the
setting of language, if you are using an interpreter that supports national
character sets.

DATATYPE(’ - 1.35E-5 ’) -> ’NUM’
DATATYPE(’1E999999999’) -> ’CHAR’
DATATYPE(’1E9999999999’) -> ’CHAR’
DATATYPE(’!@#&#$(&*%" Link }) -> ’CHAR’
DATATYPE(’FooBar’, ’A’) -> ’1’
DATATYPE(’Foo Bar’, ’A’) -> ’0’
DATATYPE(’010010111101’, ’B’) -> ’1’
DATATYPE(’0100 1011 1101’, ’B’) -> ’0’
DATATYPE(’foobar’, ’L’) -> ’1’
DATATYPE(’FooBar’, ’M’) -> ’1’
DATATYPE(’ -34E3 ’, ’N’) -> ’1’
DATATYPE(’A_SYMBOL!?!’, ’S’) -> ’1’
DATATYPE(’1.23.39E+4.5’, ’S’) -> ’1’
DATATYPE(’Foo bar’, ’S’) -> ’0’
DATATYPE(’FOOBAR’, ’U’) -> ’1’
DATATYPE(’123deadbeef’, ’X’) -> ’1’

DATE([option])

This function returns information relating to the current date. If the option
character is specified, it will set the format of the return string. The
default value for option is "N". Possible options are:

B (Base) The number of days from January 1st 0001 until yesterday in-
clusive, as a whole number. This function uses the Gregorian calendar
extended backwards.

C (Century) The number of days in this century from January 1st --00 until
today, inclusive. The return value will be a positive integer.

D (Days) The number of days in this year from January 1st until today,
inclusive. The return value will be a positive integer.

E (European) The date in European format, i.e. "dd/mm/yy". If any of the
numbers is single digit, it will have a leading zero.

M (Month) The unabbreviated name of the current month, in English.

Regina documentation 24 / 95

N (Normal) Return the date with the name of the month abbreviated to three
letters, with only the first letter in upper case. The format will be
"dd Mmm yyyy", where Mmm is the month abbreviation and dd is the day of
the month, without leading zeros.

O (Ordered) Returns the date in the ordered format, which is "yy/mm/dd".

S (Standard) Returns the date according the format specified by Interna-
tional Standards Organization Recommendation ISO/R 2014-1971 (E). The
format will be "yyyymmdd", and each part is padded with leading zero
where appropriate.

U (USA) Returns the date in the format that is normally used in USA,
i.e. "mm/dd/yy", and each part is padded with leading zero where
appropriate.

W (Weekday) Returns the English unabbreviated name of the current weekday
for today. The first letter of the result is in upper case, the rest is
in lower case.

Note that the "C" option is present in Rexx language level 3.50, but was
removed in level 4.00. The new "B" option should be used instead. When
porting code that use the "C" option to an interpreter that only have the
"B" option, you will can use the conversion that January 1st 1900 is day
693595 in the Gregorian calendar.

Note that none of the formats in which DATE() return its answer are effected
by the settings of NUMERIC. Also note that if there are more than one call to
DATE() (and TIME()) in a single clause of Rexx code, all of them will use the
same basis data for calculating the date (and time).

If the Rexx interpreter contains national support, some of these options may
return different output for the names of months and weekdays.

Assuming that today is January 6th 1992:

DATE(’B’) -> ’727203’
DATE(’C’) -> ’33609’
DATE(’D’) -> ’6’
DATE(’E’) -> ’06/01/92’
DATE(’M’) -> ’January’
DATE(’N’) -> ’6 Jan 1992’
DATE(’O’) -> ’92/01/06’
DATE(’S’) -> ’19920106’
DATE(’U’) -> ’01/06/92’
DATE(’W’) -> ’Monday’

DELSTR(string,start[,length])

Returns string, after the substring of length length starting at position
start has been removed. The default value for length is the rest of the
string. Start must be a positive whole number, while length must be a
non-negative whole number. It is not an error if start or length (or a
combination of them) refers to more characters than string holds

DELSTR(’Foobar’, 3) -> ’Foo’

Regina documentation 25 / 95

DELSTR(’Foobar’, 3, 2) -> ’Foor’
DELSTR(’Foobar’, 3, 4) -> ’Foo’
DELSTR(’Foobar’, 7) -> ’Foobar’

DELWORD(string,start[,length])

Removes length words and all blanks between them, from string, starting at
word number start. The default value for length is the rest of the string.
All concequitive spaces immediately after the last deleted word, but no
spaces before the first deleted word is removed. Nothing is removed if length
is zero.

The valid range of start is the positive whole numbers; the first word in
string is numbered 1. The valid range of length is the non-negative integers.
It is not an error if start or length (or a combination of them) refers to
more words than string holds.

DELWORD(’This is a test’, 3) -> ’This is ’
DELWORD(’This is a test’, 2, 1) -> ’This a test’
DELWORD(’This is a test’, 2, 5) -> ’This’
DELWORD(’This is a test’, 1, 3) -> ’test’ /* No leading space */

DIGITS()

Returns the current precision of arithmetic operations. This value is set
using the NUMERIC statement. For more information, refer to the documentation
on NUMERIC.

DIGITS() -> ’9’ /* Maybe */

D2C(integer[,length])

Returns a (packed) string, that is the character representation of integer,
which must be a whole number, and is governed by the settings of NUMERIC, not
of the internal precision of the builtin functions. If length is specified
the string returned will be length bytes long, with sign extension. If length
(which must be a non-negative whole number) is not large enough to hold the
result, an error is reported.

If length is not specified, integer will be interpreted as an unsigned
number, and the result will have no leading nul characters. If integer is
negative, it will be interpreted as a two’s complement, and length must be
specified.

D2C(0) -> "
D2C(127) -> ’7F’x
D2C(128) -> ’80’x
D2C(128, 3) -> ’000080’x
D2C(-128) -> ’80’x
D2C(-10, 3) -> ’fffff5’x

D2X(integer[,length])

Regina documentation 26 / 95

Returns a hexadecimal number that is the hexadecimal representation of
integer. Integer must be a whole number under the current settings of
NUMERIC, it is not effected by the precision of the builtin functions.

If length is not specified, then integer must be non-negative, and the result
will be stripped of any leading zeros.

If length is specified, then the resulting string will have that length.
If necessary, it will be signextended on the left side to make it the right
length. If length is not large enough to hold integer, an error is reported.

D2X(0) -> ’0’
D2X(127) -> ’7F’
D2X(128) -> ’80’
D2X(128, 5) -> ’00080’x
D2X(-128) -> ’80’x
D2X(-10, 5) -> ’ffff5’x

ERRORTEXT(errno)

Returns the Rexx error message associated with error number errno. If the
error message is not defined, a nullstring is returned.

The error messages in Rexx might be slightly different between the various
implementations. The standard says that errno must be in the range 0-99,
but in some implementations it might be within a less restricted range which
gives room for system specific messages. You should in general not assume
that the wordings and ordering of the error messages are constant between
implementations and systems.

ERRORTEXT(20) -> ’Symbol expected’
ERRORTEXT(30) -> ’Name or string too long’
ERRORTEXT(40) -> ’Incorrect call to routine’

FORM()

Returns the current "form", in which numbers are presented when exponential
form is used. This might be either SCIENTIFIC (the default) or ENGINEERING.
This value is set through the NUMERIC FORM clause. For more information, see
the documentation on NUMERIC.

FORM() -> ’SCIENTIFIC’ /* Maybe */

FORMAT(number[,[before][,[after][,[expp][,[expt]]]]])

This function is used to control the format of numbers, and you may request
the size and format in which the number is written. The parameter number
is the number to be formated, and it must be a valid Rexx number. note that
before any conversion or formatting is done, this number will be normalized
according to the current setting of NUMERIC.

The before and after parameters determines how many characters that are used
before and after the decimal point, respectively. Note that before does not
specify the number of digits in the integer part, it specifies the size of

Regina documentation 27 / 95

the field in which the integer part of the number is written. Remember to
allocate space in this field for a minus too, if that is relevant. If the
field is not long enough to hold the integer part (including a minus if
relevant), an error is reported.

The after parameter will dictate the size of the field in which the frac-
tional part of the number is written. The decimal point itself is not a part
of that field, but the decimal point will be ommitted if the field holding
the fractional part is empty. If there are less digits in the number than the
size of the field, it is padded with zeros at the right. If there is more
digits then it is possible to fit into the field, the number will be rounded
(not truncated) to fit the field.

Before must at least be large enough to hold the integer part of number.
Therefore it can never be less than 1, and never less than 2 for negative
numbers. The integer field will have no leading zeros, except a single zero
digit if the integer part of number is empty.

The parameter expp the size of the field in which the exponent is written.
This is the size of the numeric part of the exponent, so the "E" and the
sign comes in addition, i.e. the real length if the exponent is two more than
expp specifies. If expp is zero, it signalizes that exponential form should
not be used. Expp must be a non-negative whole number. If expp is positive,
but not large enough to hold the exponent, an error is reported.

Expt is the trigger value that decides when to switch from simple to
exponential form. Normally, the default precision (NUMERIC DIGITS) is used,
but if expt is set, it will override that. Note that if expt is set to
zero, exponential form will always be used. However, if expt tries to force
exponential form, simple form will still be used if expp is zero. Negative
values for expt will give an error. Exponential form is used if more digits
than expt is needed in the integer part, or more than twice expt digits are
needed in the fractional part.

Note that the after number will mean different things in exponential and
simple form. If after is set to e.g. 3, then in simple form it will force the
precision to 0.001, no matter the magnitude of the number. If in exponential
form, it will force the number to 4 digits precision.

FORMAT(12.34,3,4) -> ’ 12.3400’
FORMAT(12.34,3,,3,0) -> ’ 1.234E+001’
FORMAT(12.34,3,1) -> ’ 12.3400’
FORMAT(12.34,3,0) -> ’ 12.3’
FORMAT(12.34,3,4) -> ’ 12’
FORMAT(12.34,,,,0) -> ’1.234E+1’
FORMAT(12.34,,,0) -> ’12.34’
FORMAT(12.34,,,0,0) -> ’12.34’

FUZZ()

Returns the current number of digits which are ignored when comparing
numbers, during operations like = and >. The default value for this is 0.
This value is set using the NUMERIC FUZZ statement, for more information see
that.

FUZZ() -> ’0’ /* Maybe */

Regina documentation 28 / 95

INSERT(string1,string2[,position[,length[,padchar]]])

Returns the result of inserting string1 into a copy of string2. If position
is specified, it marks the character in string2 which string1 it to be
inserted after. Position must be a non-negative whole number, and it defaults
to 0, which means that string2 is put in front of the first character in
string1.

If length is specified, string1 is truncated or padded on the right side
to make it excatly length characters long before it is inserted. If padding
occurs, then padchar is used, or space if padchar is undefined.

INSERT(’first’, ’SECOND’) -> ’SECONDfirst’
INSERT(’first’, ’SECOND’, 3) -> ’fiSECONDrst’
INSERT(’first’, ’SECOND’, 3, 10) -> ’fiSECOND rst’
INSERT(’first’, ’SECOND’, 3, 10, ’*’) -> ’fiSECOND****rst’
INSERT(’first’, ’SECOND’, 3, 4) -> ’fiSECOrst’
INSERT(’first’, ’SECOND’, 8) -> ’first SECOND’

LASTPOS(needle,haystack[,start])

Searches the string haystack for the string needle, and returns the position
in haystack of the first character in the substring that matched needle. The
search is started from the right side, so if needle occurs several times, the
last occurence is reported.

If start is specified, the search starts at character number start in
haystack. Note that the standard only states that the search starts at the
startth character. It is not stated whether a match can partly be to the
right of the start position, so some implementations may differ on that
point.

LASTPOS(’be’, To be or not to be’) -> 17
LASTPOS(’to’, to be or not to be’, 10) -> 3
LASTPOS(’is’, to be or not to be’) -> 0
LASTPOS(’to’, to be or not to be’, 0) -> 0

LEFT(string,length[,padchar])

Returns the length leftmost characters in string. If length (which must be a
non-negative whole number) is greater than the length of string, the result
is padded on the right with space (or padchar if that is specified) to make
it the correct length.

LEFT(’Foo bar’, 5) -> ’Foo b’
LEFT(’Foo bar’, 3) -> ’Foo’
LEFT(’Foo bar’, 10) -> ’Foo bar ’
LEFT(’Foo bar’, 10, ’*’) -> ’Foo bar***’

LENGTH(string)

Returns the number of characters in string.

Regina documentation 29 / 95

LENGTH(") -> ’0’
LENGTH(’Foo’) -> ’3’
LENGTH(’Foo bar’) -> ’7’
LENGTH(’ foo bar ’) -> ’10’

LINEIN([streamid][,[line][,count]])

Returns a line read from a file. When only streamio is specified, the reading
starts at the current read position and continues to the first End-Of-Line
(EOL) mark. Afterwards, the current read position is set to the character
after the EOL mark which terminated the read-operation. If the operating
system uses special characters for EOL marks, these are not returned by as a
part of the string read..

The default value for streamid is default input stream. The format and range
of the string streamid are implementation dependent.

The line parameter (which must be a positive whole number) might be specified
to set the current position in the file to the beginning of line number line
before the read operation starts. If line is unspecifiedified, the current
position will not be changed before the read operation. Note that line is
only valid for persistent steams. For transient streams, an error is reported
if line is specified. The first line in the stream is numbered 1.

Count specifies the number of lines to read. However, it can only take the
values 0 and 1. When it is 1 (which is the default), it will read one line.
When it is 0 it will not read any lines, and a nullstring is returned. This
has the effect of setting the current read position of the file if line was
specified.

What happens when the functions finds a End-Of-File (EOF) condition is
to some extent implementation dependant. The implementation may interpret
the EOF as an implicit End-Of-Line (EOL) mark is none such was explicitly
present. The implementation may also choose to raise the NOTREADY condition
flag (this condition is new from Rexx language level 4.00).

Whether or not stream must be explicitly opened before a read operation can
be performed, is implementation dependent. In many implementations, a read or
write operation will implicitly open the stream if not already open.

Assuming that the file /tmp/file contains the three lines: "First line",
Second line" and "Third line":

LINEIN(’/tmp/file’, 1) -> ’First line’
LINEIN(’/tmp/file’) -> ’Second line’
LINEIN(’/tmp/file’, 1, 0) -> " /* But sets read position */
LINEIN(’/tmp/file’) -> ’First line’
LINEIN() -> ’Hi, there!’ /* maybe */

LINEOUT([streamid][,[string][,line]])

Returns the number of lines remaining after having positioned the stream
streamid to the start of line line and written out string as a line of
text. If streamid is omitted, the default output stream is used. If line

Regina documentation 30 / 95

(which must be a positive whole number) is omitted, the stream will not be
repositioned before the write. If string is omitted, nothing is written to
the stream. If string is specified, a system-specific action is taken after
it has been written to stream, to mark a new line.

The format and contents of the first parameter will depend upon the im-
plementation and how it names streams. Consult implementation-specific
documentation for more information.

If string is specified, but not line, the effect is to write string to the
stream, starting at the current write position. If line is specified, but not
string, the effect is only to position the stream at the new position. Note
that the line parameter is only legal if the stream is persistent; you can
not position the current write position for transient streams.

If neither line nor string is specified, the standard requires that the
current write position is set the end of the stream, and implementation
specific side-effects may occur. In practice, this means that an imple-
mentation can use this situation to do things like closeing the stream, or
flushing the output. Consult the implementation specific documentation for
more information.

Also note that the return value of this functions may be of little or no
value, If just a half line is written, 1 may still be returned, and there are
no way of finding out how much (if any) of string was written. If string is
not specified, the return value will always be 0, even if LINEOUT() was not
able to correctly position the stream.

If it is impossible to correctly write string to the stream, the NOTREADY
flag will be raised. It is not defined whether or not the NOTREADY flag is
raised when LINEOUT() is used for positioning, and this is not possible.

Note that if you write string to a line in the middle of the stream
(i.e. line is less than the total number of lines in the stream), then
the behavior is system and implementation specific. Some systems will trun-
cate the stream after the newly written line, other will only truncate if
the newly written line has a different length than the old line which it
replaced, and yet other systems will overwrite and never truncate.

In general, consult your system and implementation specific documentation for
more information about this function. You can safely assume very little about
how it behaves.

LINEOUT(, ’First line’) -> ’1’
LINEOUT(’/tmp/file’, ’Second line’, 2) -> ’1’
LINEOUT(’/tmp/file’, ’Third line’) -> ’1’
LINEOUT(’/tmp/file’, ’Fourth line’, 4) -> ’0’

LINES([streamid])

Returns the number of complete lines remaining in the named file stream.
A complete line is not really as complete as the name might indicate;
a complete line is zero or more characters, followed by an End-Of-Line
(EOL) marker. So, if you have read half a line already, you still have a
"complete" line left. Note that it is not defined what to do with a half-
finished line at the end of a file. Some interpreters might interpret the

Regina documentation 31 / 95

End-Of-File as an implicit EOL mark too, while others might not.

The format and contents of the stream streamid is system and implementation
dependent. If omitted, the default input stream will be used.

The standard says that if it is impossible (or maybe just difficult) to
accurately count the remaining lines in a stream, LINES() can return 0 for
no more lines, and 1 for more lines. This probably applies for all transient
streams, as the interpreter can not reposition in these files, and can
therefore not count the number of remaining lines. It can also apply for
persistent files, if the operation of counting the lines left in the file is
very timeconsuming.

As a result, defensive programming indicates that you can safely only assume
that this function will return either 0 or a non-zero result. If you want
to use the non-zero result to more than just an indicator on whether more
lines are available, you must check that it is larger than one. If so, you
can safely assume that it hold the number of available lines left.

As with all the functions operating on streams, you can safely assume very
little about this function, so consult the system and implementation specific
documentation.

LINES() -> ’1’ /* Maybe */
LINES() -> ’0’ /* Maybe */
LINES(’/tmp/file’) -> ’2’ /* Maybe */
LINES(’/tmp/file’) -> ’1’ /* Maybe */

MAX(number1[,number2]...)

Takes any positive number of parameters, and will return the parameter
that had the highest numerical value. The parameters may be any valid Rexx
number. The number that is returned, is normalized according to the current
settings of NUMERIC, so the result need not be strictly equal to any of the
parameters.

Actually, the standard says that the value returned is the first number in
the parameterlist which is equal to the result of adding a positive number
or zero to any of the other parameters. Note that this definition opens for
"strange" results if you are brave enough to play around with the settings
of NUMERIC FUZZ.

MAX(1, 2, 3, 5, 4) -> ’5’
MAX(6) -> ’6’
MAX(-4, .001E3, 4) -> ’4’
MAX(1, 2, 05.0, 4) -> ’5.0’

MIN(number[,number]...)

Like MAX(), except that the lowest numerical value is returned. For more
information, see MAX().

MAX(5, 4, 3, 1, 2) -> ’1’
MAX(6) -> ’6’
MAX(-4, .001E3, 4) -> ’-4’

Regina documentation 32 / 95

MAX(1, 2, 05.0E-1, 4) -> ’0.50’

OVERLAY(string1,string2[,[start][,[length][,padchar]]])

Returns a copy of string2, totally or partially overwritten by string1. If
these are the only arguments, the overwriting starts at the first character
in string2.

If start is specified, the first character in string1 overwrites character
number start in string2. Start must be a positive whole number, and defaults
to 1, i.e. the the first character of string1. If the start position is to
the right of the end of string2, then string2 is padded at the right hand end
to make it start-1 characters long, before string1 is added.

If length is specified, then string2 will be stripped or padded at the
right hand end to match the specified length. For padding (of both strings)
padchar will be used, or space if padchar is unspecified. Length must be
non-negative, and defaults to the length of string1.

OVERLAY(’NEW’, ’old-value’) -> ’NEW-value’
OVERLAY(’NEW’, ’old-value’, 3) -> ’oldNEWlue’
OVERLAY(’NEW’, ’old-value’, 3, 5) -> ’oldNEW e’
OVERLAY(’NEW’, ’old-value’, 3, 5), ’*’) -> ’oldNEW**e’
OVERLAY(’NEW’, ’old-value’, 3, 2) -> ’oldNEalue’
OVERLAY(’NEW’, ’old-value’, 8) -> ’old-valuNEW’
OVERLAY(’NEW’, ’old-value’, 10) -> ’old-value NEW’
OVERLAY(’NEW’, ’old-value’, 8,, ’*’) -> ’old-value**NEW’
OVERLAY(’NEW’, ’old-value’, 8, 5, ’*’) -> ’old-value**NEW**’

POS(needle,haystack[,start])

Seeks for an occurrance of the string needle in the string haystack. If
needle is not found, then 0 is returned. Else, the position in haystack of
the first character in the part that matched is returned, which will be a
positive whole number. If start (which must be a positive whole number) is
specified, the search for needle will start at position start in haystack.

POS(’be’, ’to be or not to be’) -> 3
POS(’to’, ’to be or not to be’, 10) -> 17
POS(’is’, ’to be or not to be’) -> 0
POS(’to’, ’to be or not to be’, 18) -> 0

QUEUED()

Returns the number of lines currently in the external data queue (the
"stack"). Note that the stack is a concept external to Rexx, this function
may depend on the implementation and system Consult the system specific
documentation for more information.

QUEUED() -> ’0’ /* Maybe */
QUEUED() -> ’42’ /* Maybe */

RANDOM(max)

Regina documentation 33 / 95

RANDOM([min][,[max][,seed]])

Returns a pseudo-random whole number. If called with only the first parame-
ter, the first format will be used, and the number returned will be in the
range 0 to the value of the first parameter, inclusive. Then the parameter
max must be a non-negative whole number, not greater than 100000.

If called with more than one parameter, or with one parameter, which is
not the first, the second format will be used. Then min and max must be
whole numbers, and max can not be less than min, and the difference max min
can not be more than 100000. If one or both of them is unspecified, the
default for min is 0, and the default for max is 999. Note that both min and
max are allowed to be negative, as long as their difference is within the
requirements mentioned.

If seed is specified, you may control which numbers the pseudo-random
algoritm will generate. If you do not specify it, it will be set to some
"random" value at the first call to RANDOM() (typically a function of the
time). When specifying seed, it will effect the result of the current call to
RANDOM().

The standard does not require that a specific method is to be used for
generating the pseudorandom numbers, so the reproducability can only be
guaranteed as long as you use the same implementation on the same machine,
using the same operating system. If any of these change, a given seed may
produce a different sequence of pseudo-random numbers.

Note that depending on the implementation, some numbers might have a slightly
increased chance of turning up than other. If the Rexx implementation uses a
32 bit pseudo-random generator provided by the operating system and returns
the remainder after integer dividing it by the difference of min and max,
low numbers are favorized if the 232 is not a multiple of that difference.
Supposing that the call is RANDOM(100000) and the pseudo-random generator
generates any 32 bit number with equal chance, the change of getting a number
in the range 0 67296 is about 0.000010000076, while the changes of getting a
number in the range 67297 100000 is about 0.000009999843.

A much worse problem with pseudo-random numbers are that they sometimes do
not tend to be random at all. Under one operating system (name withheld to
protect the guilty), the system’s pseudo-random routine returned numbers
where the last binary digit alternated between 0 and 1. On that machine,
RANDOM(1) would return the series 0, 1, 0, 1, 0, 1, 0, 1 etc, which is hardly
random at all. You should therefore never trust the pseudo-random routine to
give you random numbers.

Note that due to the special syntax, there is a big difference between
RANDOM(10) and RANDOM(10,). The former will give a pseudo-random number in
the range 0 10, while the latter will give a pseudo-random number in the
range 10 999.

Also note that it is not clear whether the standard allows min to be equal to
max, so to program compatible, make sure that max is always larger than min.

RANDOM() -> ’123’ /* Between 0 and 999 */
RANDOM(10) -> ’5’ /* Between 0 and 10 */
RANDOM(, 10) -> ’3’ /* Between 0 and 10 */
RANDOM(20, 30) -> ’27’ /* Between 20 and 30 */

Regina documentation 34 / 95

RANDOM(,, 12345) -> ’765’ /* Between 0 and 999, and sets seed */

REVERSE(string)

Returns a string of the same length as string, but having the order of the
characters reversed.

REVERSE(’FooBar’) -> ’raBooF’
REVERSE(’ Foo Bar’) -> ’raB ooF ’
REVERSE(’3.14159’) -> ’95141.3’

RIGHT(string,length[,padchar])

Returns the length rightmost characters in string. If length (which must be a
non-negative whole number) is greater than the length of string the result is
padded on the left with the necessary number of padchars to make it as long
as length specifies. Padchar defaults to space.

RIGHT(’Foo bar’, 5) -> ’o bar’
RIGHT(’Foo bar’, 3) -> ’bar’
RIGHT(’Foo bar’, 10) -> ’ Foo bar’
RIGHT(’Foo bar’, 10, ’*’) -> ’***Foo bar’

SIGN(number)

Returns either -1, 0 or 1, depending on whether number is negative, zero,
or positive, respectively. Number must be a valid Rexx number, and are
normalized according to the current settings of NUMERIC before comparisation.

SIGN(-12) -> ’-1’
SIGN(42) -> ’1’
SIGN(-0.00000012) -> ’-1’
SIGN(0.000) -> ’0’
SIGN(-0.0) -> ’0’

SOURCELINE([lineno])

If lineno (which must be a positive whole number) is specified, this function
will return a string containing a copy of the Rexx script source code on that
line. If lineno is greater than the number of lines in the Rexx script source
code, an error is reported.

If lineno is unspecified, the number of lines in the Rexx script source code
is returned.

Note that from Rexx language level 3.50 to 4.00, the requirements of
this function were relaxed to simplify execution when the source code is
not available (compiled or preparsed Rexx). An implementation might make
two simplifications: to return 0 if called without parameter. If so, any
call to SOURCELINE() with a parameter will generate an error. The other
simplification is to return a nullstring for any call to SOURCELINE() with a
legal parameter.

Regina documentation 35 / 95

Note that the code executed by the INTERPRET clause can not be retrieved by
SOURCELINE().

SOURCELINE() -> ’42’ /* Maybe */
SOURCELINE(1) -> ’/* This Rexx script will ... */’
SOURCELINE(23) -> ’ var = 12 /* Maybe */’

SPACE(string[,[length][,padchar]])

With only one parameter string is returned, stripped of any trailing or
leading blanks, and any consequitive blanks inside string translated to a
single space character (or padchar if specified).

Length must be a non-negative whole number. If specified, consequitive
blanks within string is replaced by exactly length instances of space (or
padchar if specified). However, padchar will only be used in the output
string, in the input string, blanks will still be the "magic" characters.
As a consequence, if there exist any padchars in string, they will remain
untouched and will not affect the spacing.

SPACE(’ Foo bar ’) -> ’Foo bar’
SPACE(’ Foo bar ’, 2) -> ’Foo bar’
SPACE(’ Foo bar ’,, ’*’) -> ’Foo*bar’
SPACE(’Foo bar’, 3, ’-’) -> ’Foo---bar’
SPACE(’Foo bar’,, ’o’) -> ’Fooobar’

STEAM(streamid[,option[,command]])

This function was added to Rexx in language level 4.00. It provides a general
machanism for doing operations on streams. However, very little is specified
about how the internal of this function should work, so you should consult
the implementation specific documentation for more information.

The streamid identifies a stream. The actual contents and format of this
string is implementation dependant.

The option selects one of several operations which STREAM() is to perform.
The possible operations are:

C (Command) If this option is selected, a third parameter must be present,
command, which is the command to be performed on the stream. The contents
of command is implementation dependant.

D (Description) Returns a description of the state of streamid. The return
value is implementation dependant.

S (State) Returns a state which describes the state of streamid. The
standard requires that it is one of the following: ERROR, NOTREADY, READY
and UNKNOWN. The meaning of these are described in the chapter about
stream I/O.

Note that the options Description and State really have the same function,
but that State in general is implementation independant, while Description is
implementation dependant.

Regina documentation 36 / 95

STRIP(string[,[option][,char]])

Returns string after possibly stripping it of any number of leading and/or
trailing characters. The default action is to strip off both leading and
trailing blanks. If char (which must be a string containing exactly one
character) is specified, that character will be stripped off instead of
blanks. Interword blanks (or chars if defined, that are not leading of
trailing) are untouched.

If option is specified, it will define what to strip. The possible values for
option are:

L (Leading) Only strip off leading blanks, or chars if specified.

T (Trailing) Only strip off trailing blanks, or chars if specified.

B (Both) Combine the effect of L and T, that is, strip off both leading and
trailing blanks, or chars if it is specified. This is the default action.

STRIP(’ Foo bar ’) -> ’Foo bar’
STRIP(’ Foo bar ’, ’L’) -> ’Foo bar ’
STRIP(’ Foo bar ’, ’t’) -> ’ Foo bar’
STRIP(’ Foo bar ’, ’Both’) -> ’Foo bar’
STRIP(’0.1234500’,, ’0’) -> ’.12345’
STRIP(’0.1234500 ’,, ’0’) -> ’.1234500’

SUBSTR(string,start[,[length][,padchar]])

Returns the substring of string that starts at start, and has the length
length. Length defaults to the rest of the string. Start must be a positive
whole, while length can be any non-negative whole number.

It is not an error for start to be larger than the length of string. If
length is specified and the sum of length and start minus 1 is greater that
the length of string, then the result will be padded with padchars to the
specified length. The default value for padchar is the space character.

SUBSTR(’Foo bar’, 3) -> ’o bar’
SUBSTR(’Foo bar’, 3, 3) -> ’o b’
SUBSTR(’Foo bar’, 4, 6) -> ’ bar ’
SUBSTR(’Foo bar’, 4, 6, ’*’) -> ’ bar**’
SUBSTR(’Foo bar’, 9, 4, ’*’) -> ’****’

SUBWORD(string,start[,length])

Returns the part of string that starts at blankdelimited word start (which
must be a positive whole number). If length (which must be a non-negative
whole number) is specified, that number of words are returned. The default
value for length is the rest of the string.

It is not an error to specify length to refer to more words than string
contains, or for start and length together to specify more words than string
holds. The result string will be stripped of any leading and trailing blanks,
but interword blanks will be preserved as is.

Regina documentation 37 / 95

SUBWORD(’To be or not to be’, 4) -> ’not to be’
SUBWORD(’To be or not to be’, 4, 2) -> ’not to’
SUBWORD(’To be or not to be’, 4, 5) -> ’not to be’
SUBWORD(’To be or not to be’, 1, 3) -> ’To be or’

SYMBOL(name)

Checks if the string name is a valid symbol (a positive number or a possible
variable name), and returns a three letter string indicating the result of
that check. If name is a symbol, and names a currently set variable, VAR is
returned, if name is a legal symbol name, but has not a been given a value
(or is a constant symbol, which can not be used as a variable name), LIT is
returned to signify that it is a literal. Else, if name is not a legal symbol
name the string BAD is returned.

Watch out for the effect of "double expansion". Name is interpreted as an
expression evaluating naming the symbol to be checked, so you might have to
quote the parameter.

SYMBOL(’Foobar’) -> ’VAR’ /* Maybe */
SYMBOL(’Foo bar’) -> ’BAD’
SYMBOL(’Foo.Foo bar’) -> ’VAR’ /* Maybe */
SYMBOL(’3.14’) -> ’LIT’
SYMBOL(’.Foo->bar’) -> ’BAD’

TIME([option])

Returns a string containing information about the time. To get the time in a
particular format, an option can be specified. The default option is Normal.
The meaning of the possible options are:

C (Civil) Returns the time in civil format. The return value might be
"hh:mmXX", where XX are either am or pm. The hh part will be stripped
of any leading zeros, and will be in the range 1 12 inclusive.

E (Elapsed) Returns the time elapsed in seconds since the internal
stopwatch was started. The result will not have any leading zeros or
blanks. The output will be a floating point number with six digits after
the decimal point.

H (Hours) Returns the number of complete hours that have passed since last
midnight in the form "hh". The output will have no leading zeros, and
will be in the range 0 23.

L (Long) Returns the exact time, down to the microsecond. This is called
the long format. The output might be "hh:mm:ss.mmmmmm". Be aware
that most computers do not have a clock of that accuracy, so the actual
granularity you can expect, will be about a few milliseconds. The hh,
mm and ss parts will be identical to what is returned by the options H,
M and S respectively, except that each part will have leading zeros as
indicated by the format.

M (Minutes) Returns the number of complete minutes since midnight, in a
format having no leading zeros, and will be in the range 0 59.

Regina documentation 38 / 95

N (Normal) The output format is "hh:mm:ss", and is padded with zeros if
needed. The hh, mm and ss will contain the hours, minutes and seconds,
respectively. Each part will be padded with leading zeros to make it
double-digit.

R (Reset) Returns the value of the internal stopwatch just like the E
option, and using the same format. In addition, it will reset the
stopwatch to zero after its contents has been read.

S (Seconds) Returns the number of complete seconds since midnight, in a
format having no leading spaces, and will be in the range 0 59.

Note that the time is never rounded, only truncated. As shown in the examples
below, the seconds do not get rounded upwards, even though the decimal part
implies that they are closer to 59 than to 58. The same applies for the
minutes, which are closer to 33 than to 32, but is truncated to 32.

None of the formats will have leading or trailing spaces.

Assuming that the time is exactly 14:32:58.987654, the following will be
true:

TIME(’C’) -> ’2:32pm’
TIME(’E’) -> ’0.01200’ /* Maybe */
TIME(’H’) -> ’14’
TIME(’L’) -> ’14:32:58.987654’
TIME(’M’) -> ’32’
TIME(’N’) -> ’14:32:58’
TIME(’R’) -> ’0.430221’ /* Maybe */
TIME(’S’) -> ’58’

TRACE([setting])

Returns the current value of the trace setting. If the string setting is
specified, it will be used as the new setting for tracing, after the old
value have be recorded for the return value. Note that the setting is not
an option, but may be any of the tracesettings that can be specified to the
clause TRACE, except that the numeric variant is not allowed with TRACE().
In practice, this can be a word, of which only the first letter counts,
optionally preceded by a question mark.

TRACE() -> ’C’ /* Maybe */
TRACE(’N’) -> ’C’
TRACE(’?’) -> ’N’

TRANSLATE(string[,[tablein][,[tableout][,padchar]]])

Performs a translation on the characters in string. As a special case, if
neither tablein nor tableout is specified, it will translate string from
lower case to upper case. Note that this operation may depend on the language
chosen, if your interpreter supports national character sets.

Two translation tables might be specified as the strings tablein and
tableout. If one or both of the tables are specified, each character in

Regina documentation 39 / 95

string that exists in tablein is translated to the character in tableout
that occupies the same position as the character did in tablein. The tablein
defaults to the whole character set (all 256) in numeric sequence, while
tableout defaults to an empty set. Characters not in tablein are left
unchanged.

If tableout is larger than tablein, the extra entries are ignored. If it is
smaller than tablein it is padded with padchar to the correct length. Padchar
defaults to space.

If a character occurs more than once in tablein, only the first occurrence
will matter.

TRANSLATE(’FooBar’) -> ’FOOBAR’
TRANSLATE(’FooBar’, ’ABFORabfor’, ’abforABFOR’) -> ’fOObAR’
TRANSLATE(’FooBar’, ’abfor’) -> ’F B ’
TRANSLATE(’FooBar, ’abfor’,, ’#’) -> ’F##B##’

TRUNC(number[,length])

Returns number truncated to the number of decimals specified by length.
Length defaults to 0, that is return an whole number with no decimal decimal
part.

The decimal point will only be present if the is a non-empty decimal part,
i.e. length is non-zero. The number will always be returned in simple form,
never exponential form, no matter what the current settings of NUMERIC
might be. If length specifies more decimals than number has, extra zeros are
appended. If length specifies less decimals than number has, the number is
truncated. Note that number is never rounded, except for the rounding that
might take place during normalization.

TRUNC(12.34) -> ’12’
TRUNC(12.99) -> ’12’
TRUNC(12.34, 4) -> ’12.3400’
TRUNC(12.3456, 2) -> ’12.34’

VALUE(symbol[,[value],[pool]])

This function expects as first parameter string symbol, which names an
existing variable. The result returned from the function is the value of that
variable. If symbol does not name an existing variable, the default value is
returned, and the NOVALUE condition is not raised. If symbol is not a valid
symbol name, and this function is used to access an normal Rexx variable,
an error occurs. Be aware of the "double-expansion" effect, and quote the
first parameter if necessary.

If the optional second parameter is specified, the variable will be set to
that value, after the old value has been extracted.

The optional parameter pool might be specified to select a particular
pool of variables to search for symbol. The contents and format of pool
is implementation dependant. The default is to search in the variables at
the current procedural level in Rexx. Which pools that are available is
implementation dependent, but typically one can set variables in application

Regina documentation 40 / 95

programs or in the operating system.

Note that if VALUE() is used to access variable in pools outside the
Rexx interpreter, the requirements to format (a valid symbol) will not in
general hold. There may be other requirements instead, depending on the
implementation and the system. Depending on the validity of the name, the
value, or whether the variable can be set or read, the VALUE() function
can give error messages when accessing variables in pools other than the
normal. Consult the implementation and system specific documentation for more
information.

If it is used to access compound variables inside the interpreter the tail
part of this function can take any expression, even expression that are not
normally legal in Rexx scripts source code.

By using this function, it is possible to perform an extra level of interpre-
tation of a variable.

VALUE(’FOO’) -> ’bar’
VALUE(’FOO’, ’new’) -> ’bar’
VALUE(’FOO’) -> ’new’
VALUE(’USER’, ’root’, ’SYSTEM’) -> ’guest’ /* If SYSTEM exists */
VALUE(’USER’,, ’SYSTEM’) -> ’root’

VERIFY(string,ref[,[option][,start]])

With only the first two parameters, it will return the position of the first
character in string that is not also a character in the string ref. If all
characters in string are also in ref, it will return 0.

If option is specified, it can be one of:

N (Nomatch) The result will be the position of the first character in
string that does exist in ref, or zero if all exist in ref. This is the
default option.

M (Match) Reverses the search, and returns the position of the first
character in string that exists in ref. If none exists in ref, zero is
returned.

If start (which must be a positive whole number) is specified, the search
will start at that position in string. The default value for start is 1.

VERIFY(’foobar’, ’barfo’) -> ’2’
VERIFY(’foobar’, ’barfo’, ’M’) -> ’2’
VERIFY(’foobar’, ’fob’, ’N’) -> ’5’
VERIFY(’foobar’, ’barf’, ’N’, 3) -> ’3’
VERIFY(’foobar’, ’barf’, ’N’, 4) -> ’0’

WORD(string,wordno)

Returns the blankdelimited word number wordno from the string string. If
wordno (which must be a positive whole number) refers to a non-existing word,
then a nullstring is returned. The result will be stripped of any blanks.

Regina documentation 41 / 95

WORD(’To be or not to be’, 3) -> ’or’
WORD(’To be or not to be’, 4) -> ’not’
WORD(’To be or not to be’, 8) -> "

WORDINDEX(string,wordno)

Returns the character position of the the first character of blankdelimited
word number wordno in string, which is interpreted as a string of blankde-
limited words. If number (which must be a positive whole number) refers to a
word that does not exist in string, then 0 is returned.

WORDINDEX(’To be or not to be’, 3) -> ’7’
WORDINDEX(’To be or not to be’, 4) -> ’10’
WORDINDEX(’To be or not to be’, 8) -> ’0’

WORDLENGTH(string,wordno)

Returns the number of characters in blankdelimited word number number in
string. If number (which must be a positive whole number) refers to an non-
existent word, then 0 is returned. Trailing or leading blanks do not count
when calculating the length.

WORDLENGTH(’To be or not to be’, 3) -> ’2’
WORDLENGTH(’To be or not to be’, 4) -> ’3’
WORDLENGTH(’To be or not to be’, 0) -> ’0’

WORDPOS(phrase,string[,start])

Returns the word number in string which indicates at which phrase begins,
provided that phrase is a subphrase of string. If not, 0 is returned to
indicate that the phrase was not found. A phrase differs from a substring in
one significant way; a phrase is a set of words, separated by any number of
blanks.

For instance, "is a" is a subphrase of "This is a phrase". Notice the
different amount of whitespace between "is" and "a".

If start is specified, it sets the word in string at which the search starts.
The default value for start is 1.

WORDPOS(’or not’, ’to be or not to be’) -> ’3’
WORDPOS(’not to’, ’to be or not to be’) -> ’4’
WORDPOS(’to be’, ’to be or not to be’) -> ’1’
WORDPOS(’to be’, ’to be or not to be’, 3) -> ’6’

WORDS(string)

Returns the number of blankdelimited words in the string.

WORDS(’To be or not to be’) -> ’6’
WORDS(’Hello world’) -> ’2’
WORDS(") -> ’0’

Regina documentation 42 / 95

XRANGE([start][,end])

Returns a string that consists of all the characters from start through
end, inclusive. The default value for character start is ’00’x, while the
default value for character end is ’ff’x. Without any parameters, the whole
characterset in "alphabetic" order is returned. Note that the actual
representation of the output from XRANGE() depends on the character set used
by your computer.

If the value of start is larger than the value of end, the output will
wrap around from ’ff’x to ’00’x. If start or end is not a string containing
exactly one character, an error is reported.

XRANGE(’A’, ’J’) -> ’ABCDEFGHIJ’
XRANGE(’FC’x) -> ’FCFDFEFF’x
XRANGE(, ’05’x) -> ’000102030405’x
XRANGE(’FD’x, ’04’x) -> ’FDFEFF0001020304’x

X2B(hexstring)

Translate hexstring to a binary string. Each hexadecimal digits in hexstring
will be translated to four binary digits in the result. There will be no
blanks in the result.

X2C(hexstring)

Returns the (packed) string representation of hexstring. The hexstring
will be converted bytewise, and blanks may optionally be inserted into the
hexstring between pairs or hexadecimal digits, to divide the number into
groups and improve readability. All groups must have an even number of
hexadecimal digits, except the first group. If the first group has an odd
number of hexadecimal digits, it is padded with an extra leading zero before
conversion.

X2C(") -> "
X2C(’466f6f 426172’) -> ’FooBar’
X2C(’46 6f 6f’) -> ’Foo’

X2D(hexstring[,length])

Returns a whole number that is the decimal representation of hexstring. If
length is specified, then hexstring is interpreted as a two’s complement
hexadecimal number consisting of the number rightmost hexadecimal numerals in
hexstring. If hexstring is shorter than number, it is padded to the left with
NUL characters (that is: ’00’x).

If length is not specified, hexstring will always be interpreted as an
unsigned number. Else, it is interpreted as an signed number, and the
leftmost bit in hexstring decides the sign.

X2D(’03 24’) -> ’792’
X2D(’0310’) -> ’784’
X2D(’ffff’) -> ’65535’

Regina documentation 43 / 95

X2D(’ffff’, 5) -> ’65535’
X2D(’ffff’, 4) -> ’-1’
X2D(’ff80’, 3) -> ’-128’
X2D(’12345’, 3) -> ’837’

1.15 Implementation specific documentation for Regina

Deviations from the Standard

Interpreter Internal Debugging Functions

Rexx UNIX Interface Functions

1.16 Deviations from the Standard

* For those builtin function where the last parameter can be omitted,
Regina allows the last comma to be specified, even when the last
parameter itself has been omitted.

* The error messages are slightly redefined in two ways. Firstly, some
of the have a slightly more definite text, and secondly, some new error
messages have been defined.

* The the environments available are described in chapter ??.

* parameter calling

* stream I/O

* conditions

* national character sets

* blanks

* queues

* random()

* sourceline

* time

* character sets

1.17 Interpreter Internal Debugging Functions

Regina documentation 44 / 95

ALLOCATED([option])

Returns the amount of dynamic storage allocated, measured in bytes. This is
the memory allocated by the malloc() call, and does not concern stack space
or static variables.

As parameter it may take an option, which is one of the single characters:

A This is the default value if you do not specify an option. It will
return a string that is the number of bytes of dynamic memory currently
allocated by the interpreter.

C Returns a number that is the number of bytes of dynamic memory that is
currently in use (i.e. not leaked).

L Returns the number of bytes of dynamic memory that is supposed to have
been leaked.

S Returns a string that is nicely formatted and contains all the other
three options, with labels. The format of this string is: "Memory:
Allocated=XXX, Current=YYY, Leaked=ZZZ".

This function will only be available if the interpreter was compiled with the
TRACEMEM preprocessor macro defined.

DUMPTREE()

Prints out the internal parse tree for the Rexx program currently being
executed. This output is not very interesting unless you have good knowlegde
of the interpreter’s internal structures.

DUMPVARS()

This routine dumps a list of all the variables currently defined. It also
gives a lot of information which is rather uninteresting for most users.

LISTLEAKED()

List out all memory that has leaked from the interpreter. As a return value,
the total memory memory that has been listed is returned. There are several
option to this function:

N Do not list anything, just calculate the memory.

A List all memory allocations currently in use, not only that which has
been marked as leaked.

L Only list the memory that has been marked as leaked. This is the default
option.

TRACEBACK()

Regina documentation 45 / 95

Prints out a traceback. This is the same routine which is called when the
interpreter encounters an error. Nice for debugging, but not really useful
for any other purposes.

1.18 Rexx UNIX Interface Functions

CHDIR(string)

Set string as current working directory.

A separate function is needed for this task in the current implementation.
But when commands are implemented using pipes/sockets instead of the C
function system(), this will not be needed. Then the Rexx interpretor and its
subprocesses have different current directories.

CLOSE(streamid)

Closes the file named by string. This file must have been opened by the OPEN
function call earlier.

This function is now obsolete, instead you should use:

STREAM(streamid, ’Command’, ’CLOSE’)

GETENV(environmentvar)

Returns the named UNIX environment variable. If this variable is not
defined, a nullstring is returned. It is not possible to use this function to
determine whether the variable was unset, or just set to the nullstring.

This function is now obsolete, instead you should use:

VALUE(environmentvar,, ’SYSTEM’)

OPEN(streamid,access)

Opens the file named ’string1’ with the access ’string2’. If string2 is not
specified, the access "R" will be used. string2 may contain the following
characters:

R Opened for readaccess. The file pointer will be positioned at the start
of the file, and only read operations are allowed.

W Opened for writeaccess. Like the "R", but the file is opened for write
access. An error is returned if it was not possible to get appropriate
access.

A Opened for appending. Like "W", but the filepointer is automatically
initiated to the end of the file.

The combination of "R" and either "W" or "A" will result in opening the

Regina documentation 46 / 95

file for both reading and writing. The combination of "W" and "A" will
result in a initial filepointer set to the end of file.

The 1 is used as a sort of internal file descriptor in the Rexx interpreter.
All references to the file must have string1 as parameter to identify the
specific file (unless otherwise specified in the documentation).

Note that if you open the files "foobar" and "./foobar" they will
actually point to the same physical file. Rexx will however interpret them as
different files, and will open a file descriptor for each one.

However, if you try to open an already open file, it will have no effect.

This function is now obsolete, instead you should use:

STREAM(streamid, ’Command’, ’OPEN’ access)

UNIXERROR(errorno)

This function returns the string associated with the errno error number
that errorno specifies. When some UNIX interface function returns an error,
it really is a reference to an error message which can be obtained through
UNIXERROR.

This function is just an interface to the strerror() function call in UNIX,
and the actual error messages might differ with the operating system.

This function is now obsolete, instead you should use:

ERRORTEXT(100 + errorno)

1.19 Chapter 3

CONDITIONS

In this chapter, the Rexx concept of "conditions" is described. Conditions
allow the programmer to handle abnormal control flow, and enable him to
assign special pieces of Rexx code to be executed in case of certain
incidences.

* In the first section the concept of conditions is explained.

* Then, there is a description of how a standard condition in Rexx would
work, if it existed.

* In the third section, all the existing conditions in Rexx are presented,
and the differences compared to the standard condition described in the
previous section are listed.

* The fourth sections contains a collections of random notes on the
conditions in Rexx.

Regina documentation 47 / 95

* The last section describes differences, extensions and peculiarities in
Regina on the of subject conditions, and the lists specific behavior.

What are Conditions

The Mythical Standard Condition

The Real Conditions

Further Notes on Conditions

Conditions in Regina

Possible Future extensions

1.20 What are Conditions

In this section, the concept of "conditions" are explained: What ←↩
they are,

how they work, and what they mean in programming.

What Do We Need Conditions for?

Terminology

1.21 What Do We Need Conditions for?

1.22 Terminology

First, let’s look at the terminology used in this chapter. If you don’t get a
thorough understanding of these terms, you will probably not understand much
of what is said in the rest of this chapter.

Incident: A situation, external or internal to the interpreter, which it is
required to respond to in certain predefined manners. The interpreter
recognizes incidents of several different types. The incident will often
have a character of "suddenness", and will also be independent of the
normal control flow.

Event: Data Structure describing one incident, used as a descriptor to the
incident itself.

Condition: Names the Rexx concept that is equivalent to the incident.

Raise a Condition: The action of transforming the information about an
incident into an event. This is done after the interpreter senses the
condition. Also includes deciding whether to ignore or produce an event.

Regina documentation 48 / 95

Handle a Condition: The act of executing some predefined actions as a response
to the event generated when a condition was raised.

(Condition) Trap: Data Structure containing information about how to handle a
condition.

(Trap) State: Part of the condition trap.

(Condition) Handler: Part of the condition trap, which points to a piece of
Rexx code which is to be used to handle the condition.

(Trap) Method: Part of the condition trap, which defined how the condition
handler is to be invoked to handle the condition.

Trigger a Trap: The action of invoking a condition handler by the method
specified by the trap method, in order to handle a condition.

Trap a Condition: Short of trigger a trap for a particular condition.

Current Trapped Condition: The condition currently being handled. This is the
same as the most recent trapped condition on this or higher procedure
level.

(Pending) Event Queue: Data Structure storing zero or more events in a
specific order. There are only one event queue. The event queue contains
events of all condition types, which have been raised, but not yet
handled.

Default-Action: The predefined default way of handling a condition, taken if
the trap state for the condition raised is OFF.

Delay-Action: The predefined default action taken when a condition is raised,
and the trap state is DELAY.

1.23 The Mythical Standard Condition

Rexx Language Level 4.00 has six different conditions. However, ←↩
each of

these is a special case of a mythical, non-existing, standard condition. In
order to better understand the real conditions, we start by explaining how a
standard condition work.

In the examples below, we will call our non-existing standard condition MYTH.
Note that these examples will not be executable on any Rexx implementation.

Information Regarding Conditions (data structures)

How to Set up a Condition Trap

How to Raise a Condition

Regina documentation 49 / 95

How to Trigger a Condition Trap

Trapping by Method SIGNAL

Trapping by Method CALL

The Current Trapped Condition

1.24 Information Regarding Conditions (data structures)

There are mainly five conceptual data structures involved in conditions.

Event queue. There is one interpreter-wide queue of pending conditions.
Raising a condition is identical to adding information about the
condition to this queue (FIFO). The order of the queue is the same order
in which the conditions are to be handled.

Every entry in the queue of pending conditions contains some information
about the event: the line number of the Rexx script when the condition
was raised, a descriptive text and the condition type.

Default-Action. To each, there exists information about the default-action to
take if this condition is raised but the trap is in state OFF. This is
called the "default-action". The standard default-action is to ignore
the condition, while some conditions may abort the execution.

Delay-Action. Each condition will also have delay-action, which tells what to
do if the condition is raised when condition trap is in state DELAY. The
standard delay-action is to queue the condition in the queue of pending
conditions, while some conditions may ignore it.

Condition traps. For each condition there is a trap which contains three
pieces of status information: the state; the handler; and the method. The
state can be ON, OFF or DELAY.

The handler names the Rexx label in the start of the Rexx code to handle
the event. The method can be either SIGNAL or CALL, and denotes the
method in which the condition is to be handled. If the state is OFF, then
neither handler nor method is defined.

Current Trapped Condition. This is the most recently handled condition,
and is set whenever a trap is triggered. It contains information about
method, which condition, and a context-dependent description. In fact,
the information in the current trapped condition is the same information
that was originally put into the pending event queue.

Note that the event queue is a data structure connected to the interpreter
itself. You operate on the same event queue, independent of subroutines, even
external ones. On the other hand, the condition traps and the current trapped
condition are data structures connected to each single routine. When a new
routine is called, it will get its own condition traps and a current trapped
condition. For internal routines, the initial values will be the same values
as those of the caller. For external routines, the values are the defaults.

The initial value for the event queue is to be empty. The default-action and

Regina documentation 50 / 95

the delay-action are static information, and will always retain their values
during execution. The initial values for the condition traps are that they
are all in state OFF. The initial value for the current trapped condition is
that all information is set to the nullstring to signalize that no condition
is currently being trapped.

1.25 How to Set up a Condition Trap

How do you set the information in a condition trap? You do it with a SIGNAL
or CALL clause, with the ON or OFF subkeyword. Remember that a condition trap
contain three pieces of information? Here are the rules for how to set them:

* To set the trap method, use either SIGNAL or CALL as keyword.

* To set state to ON or OFF, use the appropriate subkeyword in the clause.
Note that there is no clause or function in Rexx, capable of setting the
state of a trap to DELAY.

* To set the condition handler, append the term "NAME handler" to the
command. Note that this term is only legal if you are setting the state
to ON; you can not specify a handler when setting the state to OFF.

The trap is said to be "enabled" when the state is either ON or DELAY, and
"disabled" when the state is OFF. Note that neither the event queue, nor
the current trapped condition can be set explicitly by Rexx clauses. They can
only be set as a result of incidents, when raising and trapping conditions.

It sounds very theoretical, doesn’t it? Look at the following examples, which
sets the trap MYTH:

/* 1 */ SIGNAL ON MYTH NAME TRAP_IT
/* 2 */ SIGNAL OFF MYTH
/* 3 */ CALL ON MYTH NAME MYTH_TRAP
/* 4 */ CALL ON MYTH
/* 5 */ CALL OFF MYTH

Line 1 sets state to ON, method to SIGNAL and handler to TRAP_IT. Line 2 sets
state to OFF, handler and method becomes undefined. Line 3 sets state to ON,
method to CALL, and handler to MYTH_TRAP. Line 4 sets state to ON, method to
CALL and handler to MYTH (the default). Line 5 sets state to OFF, handler and
method become undefined.

Why should method and handler become undefined when the trap in in state OFF?
For two reasons: firstly, these values are not used when the trap is in state
OFF; and secondly, when you set the trap to state ON, they are redefined. So
it really does not matter what they are in state OFF.

What happens to this information when you call a subroutine? All information
about traps are inherited by the subroutine, provided that it is an internal
routine. External routines do not inherit any information about traps, but
use the default values. Note that the inheritance is done by copying, so any
changes done in the subroutine (internal or external), will only have effect
until the routine returns.

Regina documentation 51 / 95

1.26 How to Raise a Condition

How do you raise a condition? Well, there are really no explicit way in Rexx
to do that. The conditions are raised when an incident occurs. What sort of
situations that is, depends on the context. There are in general three types
of incidents, classified by the origin of the event:

* Internal origin. The incident is only dependent on the behavior of the
Rexx script. The SYNTAX condition is of this type.

* External origin. The Rexx script and the interpreter has really no
control over when this incident. It happens completely independent of the
control of the Rexx script or interpreter. The HALT condition is of this
type.

* Mixed origin. The incident is of external origin, but the situation
that created the incident, was an action by the Rexx script or the
interpreter. The ERROR condition is of this type: the incident is a
command returning error, but it can only occur when the interpreter is
executing commands.

For conditions trapped by method CALL, standard Rexx requires an imple-
mentation to at least check for incidents and raise condition at clause
boundaries. (But it is allowed to do so elsewhere too; although the actual
triggering must only be performed at clause boundaries.) Consequently, you
must be prepared that in some implementations, conditions trappable by method
CALL might only be raised (and the trap triggered) at clause boundaries, even
if they are currently trapped by method SIGNAL.

The six standard conditions will be raised as result of various situations,
read the section describing each one of them for more information.

+-----------+ +-----------+ /---------\ +-----------+
| Incident | | Condition | / Trap \ Off | Default |
| occurs | --> | is raised | --> \ State / ---> | action |
+-----------+ +-----------+ / \---------/ +-----------+

/ |
/On |Delay
/ |

/ v
+-----------+/ /---------\ +-----------+
| Queue | Yes /DelayAction\ No | Ignore |
| an event | <--- \ is queue? / ---> | event |
+-----------+ \---------/ +-----------+

|
v

/---------\
/ Method is \
\ CALL? /
\---------/

/ \
/No Yes\
/ \ /---------\

Regina documentation 52 / 95

/ \ / \
+-----------+ +-----------+ \ Decision /
| Set state | | Set state | \---------/
| OFF | | DELAY |
+-----------+ +-----------+ +-----------+
| Trigger | | | | |
| trap | | Return | | Action |
+-----------+ +-----------+ +-----------+

Figure 3.1: The triggering of a condition

When an incident occurs and the condition is raised, the interpreter will
check the state of the condition trap for that particular condition at the
current procedure level.

* If the trap state is OFF, the default-action of the condition is taken
immediately. The "standard" default-action is to ignore the condition.

* If the trap state is DELAY, the action will depend on the delay-action
of that condition. The standard delay-action is to ignore, then nothing
further is done. If the delay-action is to queue, the interpreter
continues as if the state was ON.

* If the state of the trap is ON, an event is generated which describes the
incident, and it is queued in the pending event queue. The further action
will depend on the method of trapping.

If the method is CALL, the state of the trap will be set to DELAY. Then
the normal execution is resumed. The idea is that the interpreter will
check the event queue later (at a clause boundary), and trigger the
appropriate trap, if it finds any events in the event queue.

Else, if method of trapping is SIGNAL, then the action taken is this:
First set the trap to state OFF, then terminate clause the interpreter
was executing at this procedure level. Then it explicitly trigger the
condition trap.

This process has be shown in fig. 3.1. It shows how an incident makes the
interpreter raise a condition, and that the state of the condition trap
determines what to do next. The possible outcomes of this process are: to
take the default-action; to ignore if delay-action is not to queue; to just
queue and the continue execution; or to queue and trigger the trap.

1.27 How to Trigger a Condition Trap

What are the situations where a condition trap might be triggered? It depends
on the method currently set in the condition trap.

If the method is SIGNAL, then the interpreter will explicitly trigger the
relevant trap when it has raised the condition after having sensed the
incident. Note that only the particular trap in question will be triggered in
this case; other traps will not be triggered, even if the pending event queue
is non-empty.

Regina documentation 53 / 95

In addition, the interpreter will at each clause boundary check for any
pending events in the event queue. If the queue is non-empty, the interpreter
will not immediately execute the next normal statement, but it will handle
the condition(s) first. This procedure is repeated until there are no more
events queued. Only then will the interpreter advance to execute the next
normal statement.

Note that the Rexx standard does not require the pending events to be handled
in any particular order, although the model shown in this documentation
it will be in the order in which the conditions were raised. Consequently,
if one clause generates several events that raise conditions before or at
the next clause boundary, and these conditions are trapped by method CALL.
Then, the order on which the various traps are triggered is implementations-
dependent. But the order in which the different instances of the same
condition is handled, is the same as the order of the condition indicator
queue.

1.28 Trapping by Method SIGNAL

Assume that a condition is being trapped by method SIGNAL, that the state is
ON and the handler is MYTH_TRAP. The following Rexx clause will setup the trap
correctly:

SIGNAL ON MYTH NAME MYTH_TRAP

Now, suppose the MYTH incident occurs. The interpreter will sense it, queue
an event, set the trap state to OFF and then explicitly trigger the trap,
since the method is SIGNAL. What happens when the trap is triggered?

* It collects the first event from the queue of pending events. The
information is removed from the queue.

* The current trapped condition is set to the information removed from the
pending event queue.

* Then, the interpreter simulates a SIGNAL clause to the label named by
trap handler of the trap for the condition in question.

As all SIGNAL clauses, this will have the side-effects of setting the
SIGL special variable, and terminating all active loops at the current
procedure level.

That’s it for method SIGNAL. If you want to continue trapping condition MYTH,
you have to execute a new SIGNAL ON MYTH clause to set the state of the trap
to ON. But no matter how quick you reset the trap, you will always have a
short period where it is in state OFF. This means that you can not in general
use the method SIGNAL if you really want to be sure that you don’t loose any
MYTH events, unless you have some control over when MYTH condition may arise.

Also note that since the statement being executed is terminated; all active
loops on the current procedure level are terminated; and the only indication
where the error occurred is the line number (the line may contain several
clauses), then it is in general impossible to pick up the normal execution
after a condition trapped by SIGNAL. Therefore, this method is best suited

Regina documentation 54 / 95

for a "graceful death" type of traps. If the trap is triggered, you want to
terminate what you were doing, and pick up the execution at an earlier stage,
e.g. the previous procedure level.

1.29 Trapping by Method CALL

Assume that the condition MYTH is being trapped by method CALL, that the
state is ON and the handler is MYTH_HANDLER. The following Rexx clause will
setup the trap correctly:

CALL ON MYTH NAME MYTH_HANDLER

Now, suppose that the MYTH incident occurs. When the interpreter senses
that, it will raise the MYTH condition. Since the trap state is ON and the
trap method is CALL, it will create an event and queue it in the pending
event queue and set the trap state to DELAY. Then it continues the normal
execution. The trap is not triggered before the interpreter encounters the
next clause boundary. What happens then?

* At the every clause boundaries, the interpreter check for any pending
events in the event queue. If one is found, it is handled. This action is
done repeatedly, until the event queue is empty.

* It will simulate a normal function call to the label named by the trap
handler. As with any CALL clause, this will set the special variable SIGL
to the line of from which the call was made. This is done prior to the
call. Note that this is the current line at the time when the condition
was raised, not when it was triggered. All other actions normally
performed when calling a subroutine are done. Note that the arguments to
the subroutine are set to empty.

* However, just before execution of the routine starts, it will remove
the first event in the pending event queue, the information is instead
put into the current trapped condition. Note that the current trapped
condition is information that is saved across subroutine calls. It is
set after the condition handler is called, and will be local to the
condition handler (and functions called by the condition handler). To the
"caller" (i.e. the procedure level active when the trap was triggered),
it will seem as if the current trapped condition was never changed.

* Then the condition handler finishes execution, and returns by executing
the RETURN clause. Any expression given as argument to RETURN will be
ignored, i.e. the special variable RESULT will not be set upon return
from a condition handler.

* At the return from the condition handler, the current trapped condition
and the setup of all traps are restored, as with a normal return from
subroutine. As a special case, the state of the trap just triggered, will
not be put back into DELAY state, but is set to state ON.

* Afterwards (and before the next normal clause), the interpreter will
again check for more events in the event queue, and it will not continue
on the Rexx script before the queue is empty.

Regina documentation 55 / 95

During the triggering of a trap by method CALL at a clause boundary, the
state of the trap is not normally changed, it will continue to be DELAY, as
was set when the condition was raised. It will continue to be in state DELAY
until return from the condition handler, at which the state of the trap in
the caller will be changed to ON. If, during the execution of the condition
trap, the state of the condition being trapped is set, that change will only
last until the return from the condition handler.

Since new conditions are generally delayed when an condition handler is
executing, new conditions are queued up for execution. If the trap state is
changed to ON, the pending event queue will be processed as named at the next
clause boundary. If the state is changed to OFF, the default action of the
conditions will be taken at the next clause boundary.

1.30 The Current Trapped Condition

The interpreter maintains a data structure called the current trapped
condition. It contains information relating the the most recent condition
trapped on this or higher procedure level. The current trapped condition is
normally inherited by subroutines and functions, and restored after return
from these.

* When trapped by method SIGNAL the current trapped condition of the
current procedure level is set to information describing the condition
trapped.

* When trapped by method CALL, the current trapped condition at the
procedure level which the trap occurred at, is not changed. Instead, the
current trapped condition in the condition handler is set to information
describing the condition.

The information stored in the current trapped condition can be retrieved by
the builtin function CONDITION(). The syntax format of this function is:

CONDITION(option)

where option is an option string of which only the first character matters.
The valid options are: Condition name, Description, Instruction and State.
These will return: the name of the current trapped condition; the descriptive
text; the method; and the current state of the condition, respectively.
The default option is Instruction. See the documentation on the builtin
functions. See also the description of each condition below.

Note that the State option do not return the state at the time when the
condition was raised or the trap was triggered. It returns the current state
of the trap, and may change during execution. The other information in the
current trapped condition may only change when a new condition is trapped or
at treturn from subroutines.

1.31 The Real Conditions

Regina documentation 56 / 95

We have now described how the standard condition and condition ←↩
trap works in

Rexx. Let’s look at the six conditions defined which do exist. Note that none
of these behaves exactly as the standard condition.

The SYNTAX condition

The HALT condition

The ERROR condition

The FAILURE condition

The NOVALUE condition

The NOTREADY condition

1.32 The SYNTAX condition

The SYNTAX condition is of internal origin, and is raised when any syntax
or runtime error is discovered by the Rexx interpreter. It might be any of
the situations that would normally lead to the abortion of the program and
the report of a Rexx error message, except error message number 4 (Program
interrupted), which is handled by the HALT condition.

There are several differences between this condition and the standard
condition:

* It is not possible to trap this condition with the method CALL, only
method SIGNAL. The reason for this is partly that method CALL tries to
continue execution until next boundary before triggering the trap. That
might not be possible with syntax or runtime errors.

* When this condition is trapped, the special variable RC is set to
the Rexx error number of the syntax or runtime error that caused the
condition. This is done just before the setting of the special variable
SIGL.

* The default action of this condition if the trap state is OFF, is to
abort the program with a traceback and error message.

* There is not delay-action for condition SYNTAX, since it can not be
trapped by method CALL, and consequently never can get into state DELAY.

The descriptive text returned by CONDITION() when called with the Description
option for condition SYNTAX, is implementation dependent, and may also be
a nullstring. Consult the implementation-specific documentation for more
information.

Regina documentation 57 / 95

1.33 The HALT condition

The HALT condition of external origin, which is raised as a result of an
action from the user, normally a combination of keys which tries to abort the
program. Which combination of keys will vary between operating systems. Some
systems might also simulate this event by other means than key combinations.
Consult system for more information.

The differences between HALT and the standard condition are:

* The default-action for the HALT condition is to abort execution, as
though a Rexx runtime error error number 4 (Program interrupted) had
been reported. But note that SYNTAX will never be raised if HALT is not
trapped.

* The delay-action of this condition is to ignore, not queue.

The standard allows the interpreter to limit the search for situations that
would set the HALT condition, to clause boundaries. As a result, the response
time from pressing the key combination to actually raising the condition or
triggering the trap may vary, even if HALT is trapped by method SIGNAL. If a
clause for some reason has blocked execution, and never finish, you may not
be able to break the program.

The descriptive text returned by CONDITION() when called with the Description
option for condition HALT, is implementation dependent, and may also be a
nullstring. In general, it will describe the way in which the interpreter
was attempted halted, in particular if there are more than one way to do
raise a HALT condition. Consult the implementation documentation for more
information.

1.34 The ERROR condition

The ERROR is a condition of mixed origin, it is raised when a command returns
a return value which indicates error during execution. Often, commands return
a numeric value, and a particular value is considered to mean success. Then,
other values might raise the ERROR condition.

Differences between ERROR and the standard condition:

* The delay action of ERROR is to ignore, not to queue.

* The special variable RC is always set before this condition is raised. So
even if it is trapped by method SIGNAL, you can rely on RC to be set to
the return value of the command.

Unfortunately, there is no universal standard on return values. As stated,
they are often numeric, but some operating system use non-numeric return
values. For those which do use numeric values, there are no standard telling
which values and ranges are considered errors and which are considered
success. In fact, the interpretation of the value might differ between
commands within the same operating system.

Regina documentation 58 / 95

Therefore, it is up to the Rexx implementation to define which values and
ranges that are considered errors. You must expect that this information
can differ between implementations as well as between different environments
within one implementation.

The descriptive text returned by CONDITION() when called with the Description
option for condition ERROR, is the command which caused the error. Note that
this is the command as the environment saw it, not as it was entered in the
Rexx script source code.

1.35 The FAILURE condition

The FAILURE is a condition of mixed origin, it is raised when a command
returns a return value which indicates failure during execution, abnormal
termination, or when it was impossible to execute a command. It is a subset
of the ERROR condition, and if it is in state OFF, then the ERROR condition
will be raised instead. But note that an implementation is free to consider
all return codes from commands as ERRORs, and none as FAILURES. In that case,
the only situation where a FAILURE would occur, is when it is impossible to
execute a command.

Differences between FAILURE and the standard condition:

* The delay action of FAILURE is to ignore, not to queue.

* The special variable RC is always set before this condition is raised. So
even if it is trapped by method SIGNAL, you can rely on RC to be set to
the return value of the command, or the return code that signalize that
the command was impossible to execute.

As for ERROR, there is no standard the defines which return values are
failures and which are errors. Consult the system and implementation
independent documentation for more information.

The descriptive text returned by CONDITION() when called with the Description
option for condition FAILURE, is the command which caused the error. Note
that this is the command as the environment saw it, not as it was entered in
the Rexx script source code.

1.36 The NOVALUE condition

The NOVALUE condition is of internal origin. It is raised in some circum-
stances if the value of an unset symbol (which is not a constant symbol) is
requested. Normally, this would return the default value of the symbol. It is
considered bad programming practice not to initialize variables, and setting
the NOVALUE condition is one method of finding the parts of your program that
uses this programming practice.

Note however, there are only three instances where this condition may be
raised: that is when the value of an unset (non-constant) symbol is used

Regina documentation 59 / 95

requested: in an expression; after the VAR subkeyword in a PARSE clause; and
as an indirect reference in either a template, a DROP or a PROCEDURE clause.
In particular, this condition is not raised if the VALUE() or SYMBOL()
builtin functions refer to an unset symbol.

Differences between NOVALUE and the standard condtition are:

* It may only be trapped by method SIGNAL, never method CALL. This
requirement might seem somewhat strange, but the idea is that since an
implementation is only forced to check for conditions trapped by method
CALL at clause boundaries, incidences that may occur at any point within
clauses (like NOVALUE) can only be trapped by method SIGNAL. (However,
condition NOTREADY can occur within a clause, and may be trapped by
method CALL so this does not seem to be absolute consistent.)

* There is not delay-action for condition NOVALUE, since it can not be
trapped by method CALL, and consequently never can get into state DELAY.

The descriptive text returned by calling CONDITION() with the Description
option, is the derived (i.e. tail has be substituted if possible) name of the
variable that caused the condition to be raised.

1.37 The NOTREADY condition

The condition NOTREADY is a condition of mixed origin. It is raised as a
result of problems with stream I/O. Exactly what causes it, may vary between
implementations, but some of the more probable causes are: waiting for more
I/O on transient streams; access to streams not allowed; I/O operation would
block if attempted; etc. See the chapter on stream I/O for more information.

Differences between NOTREADY and the standard condition are:

* It will be ignored rather than queued if condition trap is in state
DELAY.

* This condition differs from the rest in that it can be raised during
execution of a clause, but can still be trapped by method CALL.

The descriptive text returned by CONDITION() when called with the Description
option for condition NOTREADY, is the name of the stream which caused
the problem. This is probably the same string that you used as the first
parameter to the functions that operates on stream I/O. For the default
streams (default input and output stream), the string returned by CONDITION()
will be nullstrings.

Note that if the NOTREADY trap is in state DELAY, then all I/O for files
which has tried to raise NOTREADY within the current clause will be simulated
as if operation had succeeded.

1.38 Further Notes on Conditions

Regina documentation 60 / 95

Conditions under Language Level 3.50

Pitfalls when Using Condition Traps

The Correctness of this Description

1.39 Conditions under Language Level 3.50

The concept of conditions was very much expanded from Rexx language level
3.50 to level 4.00. Many of the central features in conditions are new in
level 4.00, these include:

* The CALL method is new, previously only the SIGNAL method was available,
which made it rather difficult to resume execution after a problem. As a
part of this, the DELAY state has been added too.

* The condition NOTREADY has been added, to allow better control over
problems involving stream I/O.

* The builtin function CONDITION() has been added, to allow extraction of
information about the current trapped condition.

1.40 Pitfalls when Using Condition Traps

There are several pitfalls when using conditions:

* Remember that some information are saved across the functions. Both
the current trapped condition and the settings of the traps. Conse-
quently, you can not set a trap in a procedure level from a lower level.
(I.e. calling a subroutine to set a trap is will not work.)

* Remember that SIGL is set when trapped by method CALL. This means that
whenever a condition might be trapped by CALL, the SIGL will be set to a
new value. Consequently, never trust the contents of the SIGL variable
for more than one clause at a time. This is very frustrating, but at
least it will not happen often. When it do happen, though, you will
probably have a hard time debugging it.

* Also remember that if you use the PROCEDURE clause in a condition handler
called by method CALL, remember to EXPOSE the special variables SIGL if
you want to use it inside the condition handler. Else it will be shadowed
by the PROCEDURE.

1.41 The Correctness of this Description

In this description of conditions in Rexx, I have gone further in the
description of how conditions work, their internal data structures, the

Regina documentation 61 / 95

order in which things are executed etc, than the standard does. I have tried
to interpret the set of distinct statements that is the documentation on
condition, and design a complete and consistent system describing how such
conditions work. I have done this to try to clarify an area of Rexx which at
first glance is very difficult and sometimes unintuitive.

I hope that the liberties I have taken have helped describe conditions in
Rexx. I do not feel that the adding of details that I have done in any way
change how conditions work, but at least I owe the reader to list which
concepts that are genuine Rexx, and which have been filled in by me to make
the picture more complete. These are not a part of the standard Rexx.

* Rexx does not have anything called a standard condition. There just
"are" a set of conditions having different attributes and values.
Sometimes there are default values to some of the attributes, but still
the are no default condition.

* The terms "event" and "incident" are not used. Instead the term
"condition" is somewhat overloaded to mean several things, depending on
the situation. I have found it advantageous to use different terms for
each of these concepts.

* Standard Rexx does not have condition queue, although a structure of such
a kind is needed to handled the queuing of pending conditions when the
trap state is DELAY.

* The values default-action and delay-action are really non-existing in the
Standard Rexx documentation. I made them up to make the system more easy
to explain.

* The two-step process of first raising the flag, and then (possibly
at a later stage) triggering the trap, is not really a Rexx concept.
Originally, Rexx seems to allow implementations to select certain places
of the interpreter where events are sought for. All standard conditions
that can be called by method CALL, can be implemented by checking only at
clause boundaries.

Consequently, a Rexx implementation can choose to trigger the trap
immediately after a condition are raised (since conditions are only
raised immediately before the trap would trigger anyway). This is also
the common way used in language level 3.50, when only method SIGNAL was
implemented.

Unfortunately, the introduction of the state DELAY forces the interpreter
to keep a queue of pending conditions, so there is nothing to gain on
insisting that raising should happen immediately before triggering.
And the picture is even more mudded when the NOTREADY condition is
introduced. Since it explicitly allows raising of condition to be done
during the clause, even though the triggering of the trap must happen (if
method is CALL) at the end of the clause.

I really hope that these changes has made the concept of conditions easier to
understand, not harder. Please feel free to flame me for any of these which
you don’t think is representative for Rexx.

Regina documentation 62 / 95

1.42 Conditions in Regina

Here comes documentation that are specific for the Regina ←↩
implementation of

Rexx.

How to Raise the HALT condition

Extended builtin functions

Extra Condition in Regina

Various Other Existing Extensions

1.43 How to Raise the HALT condition

The implementation connect the HALT condition to an external event, which
might be the pressing of certain key combination. The common conventions of
the operating system will dictate what that combination of keystrokes is.

Below is a list, which describes how to invoke an event that will raise the
HALT condition under various the operating systems which Regina runs under.

* Under various variants of the Unix operating system, the HALT event it
connected to the signal "interrupt" (SIGINT). Often this signal is
bound to special keystrokes. Depending on your version of Unix, this
might be ctrl-c (mostly BSD-variants) or the del key (mostly System V).
It is also possible to send this signal from the command line, in general
using the program kill(1); or from program, in general using the call
signal(3). Refer to your Unix documentation for more information.

* Under VAX/VMS, the keysequence ctrl-c is used to raise the HALT condition
in the interpreter.

1.44 Extended builtin functions

Regina has a few extra builtin functions that are added to support the
debugging of the interpreter. Under some circumstances, these might also be
useful when debugging Rexx scripts. Note that these functions are not a part
of standard Rexx and should never be used when portability is required. The
functions are:

RAISE_COND(condition)
is used to explicitly raise a condition during execution of a Rexx
script. The interpreter will accept the execution of this function as an
event, just as if the event had occurred. Returns the nullstring.

COND_INFO([condition])
is a function that will return information about the current settings of

Regina documentation 63 / 95

the condition indicator for condition, including the state of the flag,
and the contents of the pending queue. If called without a parameter,
it will return a space-separated list of those conditions which have
non-empty pending condition queue.

TRAP_INFO([condition])
is a functions that returns the status information about a trigger at
the current procedure level. The info returned will be the state, the
method and the condition handler. If called without a parameter, a space-
separated list of condition enabled (state ON or DELAY) at the current
procedure level, is returned.

These functions are described in detail elsewhere. Note that these functions
will only be available if the interpreter was compiled with the certain
preprocessor flag set. If the code was included in the compilation, the
availability of these function will still be dependent on the selection of
extensions with the clause OPTIONS, where the extension DBG_FUNCS should be
chosen. See chapter on extensions for more information.

1.45 Extra Condition in Regina

Regina has some other extra conditions. These conditions are:

* A condition DEBUG, that is very similar to the condition HALT. The
condition is raised as a result of an event of external origin, generally
a special combination of keystrokes is pressed.

The default-action of this condition is to set the trace mode to
Normal and interactive. Consequently, the user will generally get into
interactive tracing at the next clause boundary. This way, the user may
be able to stop the program during execution, and perform debugging.

The delay-action of this condition is to ignore it.

On Unix machines, this is the signal QUIT (SIGQUIT), which is normally
bound the the ctrl-\ key. Just like condition HALT, this might also be
simulated from the command line, or from other programs. Consult the Unix
documentation for more information. On VAX/VMS machines, this event is
normally bound to the ctrl-y key.

This extended condition will only be available if the extension COND_DEBUG
has been chosen.

Whether or not the conditions listed here are available, may also depend on
whether particular preprocessor flag was set during compilation. For more
information, see the chapter on extensions.

1.46 Various Other Existing Extensions

Regina documentation 64 / 95

Here is a list of other current extensions in Regina. See chapter on
extensions for more information.

* Regina allows the condition NOVALUE to be trapped by method CALL, which
is not allowed according to the standard. This extension will only be
available if the extension CALL_ON_NOVALUE has been chosen, and the code
was compiled with certain preprocessor flags set.

If NOVALUE is being trapped by method CALL, the current clause will be
completed as if NOVALUE was not trapped at all, returning the default
value for an unset symbol as variable value.

1.47 Possible Future extensions

Here is a list of possible future extensions to Rexx which has not been
implemented into Regina. Some of these exist in other implementations of
Rexx, and some of them are just suggestions or ideas thrown around by various
people.

* Another extension could have been included, but have been left out so
far. It is the delay-action, which in standard Rexx can be either to
ignore or to queue. There is at least one other action that make sense:
to replace. That is, when a trap is in state DELAY, and a new condition
has been raised, the pending queue is emptied, before the new condition
is queued. That way, the new condition will effectively replace any
conditions already in the queue.

If there are several new conditions raised while the condition handler is
executing (and the trap state is DELAY), only the very last of them is
remembered.

* It should be possible to set the state for a trap to DELAY, so that
any new instances of the condition is handles by the delay-action. As a
special case, the SYNTAX condition trap might not be set in state DELAY.

1.48 Chapter 4

FILE INPUT AND OUTUT

In this chapter treats input and output to files using the built-in func-
tions. An overview over the other parts of the I/O system are given, but it
is not discussed in detail.

Rexx’s Notion of a

Regina documentation 65 / 95

Positioning within a File

Persistent and Transient Streams

Errors: Discovery, Handling and Recovery

Naming Files

Non-standard Operations on Files

Where Implementations are Allowed to Differ

Where Implementations might Differ anyway

Typical Problems when Handling Files

Stream I/O in Regina

1.49 Rexx’s Notion of a

Rexx regards a stream as a sequence of characters, conceptually equivalent
to what a user might type at his keyboard. Note that this definition of
a "stream" is not exactly equivalent to what is generally known as a
"file". A "file" refers to a collection of information stored on a
storage device (e.g. disk or tape); while a "stream" is more like the
interface to "file".

There are basically two ways of reading and writing a stream: line-wise, and
character-wise. When reading line-wise, the underlaying storage method of the
stream has embedded information describing where each lines starts and ends.

Some filesystems store this information as one or more special characters,
while others structure the file into "records"; each containing a single
line. This introduces a slightly subtle point; even though a stream A returns
same data when read by LINEIN() on two different machines; the data read from
A may differ between the two machines when the stream is read by CHARIN().
This is so because the end-of-line markers may vary between the two operating
systems.

Therefore, for maximum portability, the line-oriented built-in functions
(LINEIN(), LINEOUT() and LINES()) should only be used for line-oriented
streams. While the character-oriented built-in functions (CHARIN(), CHAROUT()
and CHARS) should only be used for character-oriented data. This means that
you can’t mix character- and line-oriented data in a single stream, and
simultanously maintain maximum portability.

The difference between character- and line-oriented streams are roughly the
equivalent to the difference between binary and text streams.

The end-of-file marker may be differently implemented on different systems.
On some systems, this marker is implicitly present at the end-of-file ---
which is calculated from the size of the file (e.g. Unix). Other systems may
put a character signifying end-of-file at the end of the file. These concepts
vary between operating systems, any you can only hope that the interpreter

Regina documentation 66 / 95

handles each concept intelligently. Check with the implementation-specific
documentation for further information.

1.50 Positioning within a File

As mentioned, Rexx supports two strategies for reading and writing streams:
character-wise, and line-wise.

For each open file, there is a current read position or a current write
position, depending on whether the file is open for read or write. If the
file is open for read and write simultaneously, it will have both a current
read position and a current write position, and the two will be independant
and --- in general --- different.

Please note that Rexx starts numbering at 1, not 0. Therefore, the first
character and the first line in a file are both numbered 1. This differs from
several other programming languages, which starts numbering at 0.

Just after a stream has been opened, the initial values of the current read
position is at (or before) the first character in the file, while the current
write position is the end-of-file, i.e. the position just after the last
character in the file. Then, reading will return the first character (or
line) in the stream, and writing will append the new character (or line) to
the stream.

These values for the current read and write positions are the default values.
Depending on your Rexx implementation, other mechanisms for explicitly
opening streams (e.g. through the STREAM() built-in function) may be
provided, and may set other initial values for the current read and write
positions. See your implementation-specific documentation for further
information.

When setting the current read position, it must be set to the position of an
existing character in the stream; i.e. a positive value, not greater than the
number of characters in the stream. In particular, it is illegal to set the
current read position to the position after the last character in the stream;
although this is legal in some other programming languages and operating
systems, where it is known as "seeking to the end-of-file".

When setting the current write position, it too must be set to the position
of an existing character in the stream, see above. In addition, and unlike
the current read position, the current write position may be set to the
position immediately following the last character in the stream. This is
known as "positioning at the end-of-file", and it is the initial value
for the current write position when a stream is opened. Note that it is
not allowed to reposition the current write position further out after the
end-of-file --- which would create a "hole" in the stream --- even though
this is allowed in some other languages and operating systems.

Rexx only keeps one current read position and one current write position for
each stream. So both line-wise and character-wise reading (and positioning of
the current read position) will operatate on the same read current position.
And similar for the current write position. When repositioning using lines,
the current read or write position will be set to the first character in the

Regina documentation 67 / 95

next line to be processed.

Note that if you want to reposition the current write position using a line
count, the stream will probably have to be open for read too. This is because
the operating system may need to read the contents of the stream in order to
find the lines. Depending on your operating system, this may even apply if
you reposition using character count.

Since the current read position must be at an existing character in the
stream, it is impossible to reposition in or read from an empty stream.

1.51 Persistent and Transient Streams

Rexx knows two different types of streams: persistent streams and transient
streams. They differ conceptually in the way they can be operated on,
which is dictated by the way they are stored. But there is no difference
in the data you can read from or write to them. (i.e. both can used for
character- or line-oriented data), and both are read and written using the
same functions.

Persistent streams (often referred to just as "files") are conceptually
stored in a permanent storage in the computer (e.g. a disk), as an array of
characters. Random access to any part of the stream is allowed for persistent
files.

Transient streams are typically not available for random access, either
becuase it is not stored permanently, but read as a sequence of data; or
because it is available as a sequential storage (e.g. magnetic tape) where
random access is difficult. Typical examples of transient files might be
devices like the keyboards and printers, communication interfaces, pipelines,
etc.

Rexx does not allow any sort of repositioning on transient stream; such
operations are not meaningful for a conceptually transient stream. It is
possible to read a persistent stream as a transient stream, but not vice
versa. Some implementations therefore may allow you to open a persistent
stream as transient. One good candidate for such a treatment are files to
which you have just append-only (i.e. you are not allowed to read, and writes
can only be performed at the end of file).

1.52 Errors: Discovery, Handling and Recovery

TRL2 contains several important improvement over TRL1 in the area of handling
errors in file I/O. The two most important differences are the NOTREADY
condition and the STREAM() built-in function.

You discover that an error occurred in a I/O operation in one of the
following ways: It may trigger a SYNTAX condition; it may trigger a NOTREADY
condition; or it may just not return that data it was supposed to. There is
no clear border between which situations that should trigger SYNTAX and which

Regina documentation 68 / 95

should trigger NOTREADY. Error in parameters to the I/O functions, like a
negative start position, are clearly a SYNTAX condition, while reading off
the end-of-line are equally clearly a NOTREADY condition. Inbetween lays
more uncertain situations like trying to position current read position after
the end-of-file, or trying to read a non-existent file or using an illegal
filename.

These situations are likely to be differently handled in various imple-
mentations, but you can assume that they are handled as either SYNTAX or
CONDITION. Defencive programming requires you to check for both of these.

If not trapped, SYNTAX will terminate the program while NOTREADY will be
ignored, so the implementors decision about which of these to use may even
depend on the severity of the problem (i.e. if the problem is not big,
raising SYNTAX may be a little to strict).

Personally, I think SYNTAX should be raised only if the parameters is outside
the valid range for all contexts.

1.53 Naming Files

Ulike other programming languages, Rexx does not use filepointers; the name
of the file is supplied to all I/O functions operating on that file. However,
under the surface, the Rexx interpreter is likely to use native filepointers
of the operating system, in order to improve speed.

The format of the file name will be very dependent upon the operating system
you are running. For portability concerns, you should try not to specify the
file name as a literal string in the I/O calls, but set a variable to the
file name, and use the variable when calling I/O functions. That will reduce
the number of place you need to change if you need to port the program to
another system.

If the stream name is omitted from the built-in I/O functions (the built-in
I/O functions are CHARIN(), CHAROUT(), CHARS(), LINEIN(), LINEOUT() and
LINES()), a default stream is used: input functions use the default input
stream, while output functions use the default output stream.
Unfortunately, there is no standard way to explicitly specify a stream name
as the default input or output stream. And consequently, there is no
standard way to refer to the default input or output stream in the built-in
function STREAM(). You must refer to implementation specific documentation
for information about this. But the interpreter itself, or the operating
system may have means to connect any file or stream to the default I/O
stream.

The use of file names instead of file descriptors are deeply rooted in the
Rexx philosophy: Datastructures are text string carrying the information,
rather than opaque datablocks in internal, binary format. This opens for some
intriguing possibilities. I many operating systems, a file can be referred
to by many names. For instance, under Unix, a file can be referred to as
foobar, ./foobar and ././foobar. All which are the same file, although a Rexx
interpreter are likely to interpret them as three different files, since the
names themselves differ.

Regina documentation 69 / 95

1.54 Non-standard Operations on Files

1.55 Where Implementations are Allowed to Differ

The TRL is rather relaxed in its specifications of what an implementation
must implement of the I/O system. It recognizes that operating systems
differ, and that some details must be left to the implementor to decide, if
Rexx is to be effectively implemented.

The parts of the I/O subsystem of Rexx where implementations are allowed to
differ, are:

* The functions LINES() and CHARS() are not required to return the
number of lines or characters left in a stream. TRL says that if it is
impossible or difficult to calculate that number, these functions may
return "1" unless it is absolutely certain that there are no more data
left. This leads to some rather klugdy programming techniques.

* Rexx does not contain a standard way to flush or close files. There is
one method available to the implementors: If you call either CHAROUT()
or LINEOUT(), but omit the data to be written, and you don’t specify a
new current write position, the implementation are allowed by TRL to do
something "magic". It is not explicitly defined what this magic is,
but TRL suggests that it may be closing the file, flushing the file or
committing changes done to the file.

You should always confer the implementation specific documentation before
using this feature. The difference in the action of closing and flushing
a file, can make a Rexx script that works under one implementation
totally crash under another, so this feature is of very limited value if
you are trying to write portable programs.

1.56 Where Implementations might Differ anyway

In the section above, some areas where the stanard allows implementations to
differ are listed. In an ideal world, that ought to be the only traps that
you should need to look out for, but unfortunately, the world is not ideal.
There are several areas where the requirements set up by the standard is
quite high, and where implementations are likely to differ from the standard.

These areas are:

* Repositioning at or beyond the end-of-file may be allowed. On some
systems, to prohibit that would require a lot of checking, so some
systems will probably skip that check.

Regina documentation 70 / 95

1.57 Typical Problems when Handling Files

This is that section of peculiar behavior. What sort of behavior ←↩
do you ought

to avoid in order to keep out of trouble.

The Stream was Renamed During Execution

LINES() and CHARS() are Inaccurate

If You don’t Close Your Files

1.58 The Stream was Renamed During Execution

Suppose you start reading from a stream, let us call it foo. You read the
first line of foo. Then you issue a command, in order to rename foo to bar.
Then you try to read the next line from foo. What will happen?

Strictly speaking, the file foo does not exist anymore, so the second read
should raise the NOTREADY condition. However, your Rexx interpreter is likely
to have opened the file already, so it is performing the reading on the
file descriptor of the open file. It is probably not going to check whether
the file exist before each I/O operation (that would require a lot of extra
checking). On a large number of operating systems, renaming a file will not
invalidate existing file descriptors. Consequently, the interpreter is likely
to continue to read from the original foo file, even though it has changed
its name.

1.59 LINES() and CHARS() are Inaccurate

1.60 If You don’t Close Your Files

Rexx has a "auto-open-on-demand" feature, which enables the user to use
streams without opening them first. Some Rexx interpreters may require you
to perform some implementation dependant operation before accessing streams,
but most implementations are likely to open any stream when it is first
referenced in an I/O function.

However, the Rexx interpreter will never know when to close a stream, unless
explictly told. It can never foretell when a particular stream is to be used
next, and it has to keep the current read and write positions in case the
stream is to be used again. Therefore, you should always close the streams
when you’ve finished using them. Failure to do so, will fill the interpreter
with data about unneeded streams, and more serious, it may fill the file
table of your computer. The rule is that any Rexx script that uses more than
a couple of streams, should close every stream after use, and try to keep the
number of simultaneously open streams as low as possible.

Regina documentation 71 / 95

A good Rexx interpreter might try to defend itself against this sort of open-
many-close-none programming, by the use of various programming techniques.

1.61 Stream I/O in Regina

Regina tries to implement stream I/O which closely resembles how it is
described in TRL.

* In order to defend itself against "open-many-close-none" programming,
Regina tries to "swap out" files that has not been used for some time.
Assume that your operating system limits Regina to 100 simultaneously
open files, when your try to open your 101st file, Regina will close the
least recently used file, and use that file descriptor for the new file.

So, what happends if you decide to use the first file, the file that was
just closed? Well, Regina only closes the file in the operating system,
but retains all vital information about the file itself. If you reaccess
the file again, Regina will reopen it, and position the current read and
write position at the correct (i.e. previous) positions.

This will introduce some uncertainty into file processing. Renaming a
file will affect a file only if it gets swapped out (See 4.9.1). But it
is better than terminating the interpreter because the system file table
overflows.

Regina will not allow any file to be swapped out. Transient file are not
swapped, since they often are connected to some sort of active partner
in the other end, and closing the file might kill the partner or make
it impossible to reestablish the stream. So only persistent files are
swapped out.

* Regina allows files to be explicitly opened and closed through the use
of the built-in function STREAM(). The exact syntax of this function is
described elsewhere. Old versions of Regina supported two non-standard
built-in functions OPEN() and CLOSE() for these operations. These
functions are still supported for compatibilty reasons, but might be
removed in future releases.

* When line-repositioning the current write position to the middle of a
file, Regina will truncate the file at that point. If it didn’t, the
file might contain half a line, and some lines might disappear, and the
linecount would in general be disrupted. Unfortunately, the operation of
truncating a file is not standard, and it might not exist on all systems,
so on some rare systems, this truncating will not take place.

1.62 Chapter 5

Interfacing Rexx to other programs

This chapter describes an interface between a Rexx interpreter and another

Regina documentation 72 / 95

program, typically written in C or another high level, compiled language. It
is intended for application programmers who are implementing Rexx support in
their programs. It describes the interface known as the Rexx SAA API.

Overview of functions in SAA

Datastructures

The Subcommand Handler Interface

Executing Rexx Code

Variable Pool Interface

The System Exit Handler Interface

1.63 Overview of functions in SAA

The functionality of the interface is devided into some main areas ←↩
:

Subcommand handlers (section 5.3) which trap and handle a command to an
external environment.

Interpreting Rexx scripts (section 5.4), either from a disk file, or from
memory.

Variable interface (section 5.5), which makes it possible to access the
variables in the interpreter, and allows operations like setting,
fetching and dropping variables.

System exits (sections 5.2.2 and 5.6), which are used to hook into certain key
points in the interpreter while it executes a script.

In the following sections each of these areas are described in detail, and a
number of brief but complete examples are given at the end of the chapter.

The description is of a highly technical nature, since it is assumed that
the reader will be an application programmer seeking information about the
interface. Therefore, much of the content is given as prototypes and C style
datatype definitions. Although this format is cryptic for non-C programmers,
it will convay exact, compact, and complete information to the intended
readers. Also, the problems with ambiguity and incompleteness that often
accompany a descriptive prose text are avoided.

Include Files and Libraries

Preprocessor Symbols

Allocating and Deallocating Space

Regina documentation 73 / 95

1.64 Include Files and Libraries

All the C code that uses the Rexx application interface, must include a
special header file that contains the necessary definitions. This file is
called rexxsaa.h. Where you will find this file, will depend on you system
and which compiler you use.

Also, the interface part between the application and the Rexx interpreter
may be implemented as a library, which you link with the application using
the functions described in this chapter. The name of this library, and
its location might differ from system to system. With Regina, it is called
libregina.a, and is produced when you compile Regina.

1.65 Preprocessor Symbols

Including a header file ought to be enough; unfortunately, that is not so.
Each of the domains of functionality listed above are defined in separate
"sections" in the rexxsaa.h header file. In order for these to be made
available, certain proprocessor symbols have to be set. For instance, you
have to include the following definition:

#define INCL_RXSHV

in order to make available the definitions and datatypes concerning the
variable pool interface. The various definitions that can be set are:

INCL_RXSUBCOM Must be defined in order to get the prototypes, datatypes and
symbols needed for the subcommand interface of the API.

INCL_RXSYSEXIT Must be defined in order to get the prototypes, datatypes, and
symbols needed for the system exit functions

INCL_RXSHV Must be set in order to get the prototypes, symbols and datatype
definitions necessary to use the Rexx variable pool.

1.66 Allocating and Deallocating Space

For several of the functions described in this chapter, the application
calling them must allocate or deallocate dynamic memory. Depending on
the operating system, compiler and Rexx interpreter, the method for these
allocations and deallocations might vary. Regina uses malloc() and free() in
all these situations.

1.67 Datastructures

Regina documentation 74 / 95

In this section, some datastructures relevant to the application ←↩
interface to

Rexx are defined and described. These are:

RXSTRING Holds a Rexx string.

RXSYSEXIT Holds a definition of a system exit handler. Used when starting a
Rexx script with RexxStart, and when defining the system exit handlers.

The RXSTRING structure

The RXSYSEXIT structure

1.68 The RXSTRING structure

The SAA API interface uses "Rexx strings" which are stored in the structure
RXSTRING. There is also a datatype PRXSTRING, which is a pointer to RXSTRING.
Their definitions are:

typedef struct {
unsigned char *strptr ; /* Pointer to string contents */
unsigned long strlength ; /* Length of string */

} RXSTRING ;

typedef RXSTRING *PRXSTRING ;

The strptr field is a pointer to an array of characters making up the
contents of the "Rexx string", while strlength holds the number of
characters in that array.

Unfortunately, there are some inconsistencies in naming of various special
kinds of strings. In Rexx (TRL), a "null string" is a string that has zero
length. On the other hand, the SAA API operates with two kinds of special
strings: "null strings" and "zero length strings". The latter is a string
with zero length (equals null strings in Rexx), while the former is a sort of
"undefined" or "empty" string, which denotes a string without a value.
The "null strings" of SAA API are used to denote unspecified values (e.g. a
parameter left out in a subroutine call). In this chapter, when the terms
"null strings" and "zero length strings" are quoted, they refer to the
SAA API style meaning.

A number of macros are defined, which simplifies operations on RXSTRINGs
for the programmer. In the list below, all parameters called x are of type
RXSTRING.

MAKERXSTRING(x,content,length) The parameter contents must be a pointer
to char, while length is integer. The x parameter will be set to the
contents and length supplied. The only operations are assignments; no new
space is allocated and the contents of the string is not copied.

RXNULLSTRING(x) Returns true only if x is a "null string". I.e. x.strptr is
NULL.

Regina documentation 75 / 95

RXSTRLEN(x) Returns the length of the string x as an unsigned long. Zero is
returned both when x is a "null string" or a "zero length string".

RXSTRPTR(x) Returns a pointer to the first character in the string x, or NULL
if x is a "null string". If x is a "zero length string", and non-NULL
pointer is returned.

RXVALIDSTRING(x) Returns true only if x is neither a "null string" nor a
"zero length string", i.e. x must have non-empty contents.

RXZEROLENSTRING(x) Returns true only if x is a "zero length string".
I.e. x.strptr is non-NULL, and x.strlength is zero.

These definitions are most likely to be defined as preprocessor macros, so
you should never "call" them with "parameters" having any side effects.
Also note that at least MAKERXSTRING() is likely to be implemented as two
statements, and might not work properly if following e.g. an if statement.
Check the actual definitions in the rexxsaa.h header file before using them
in a fancy context.

One definition of these might be (don’t expect this to be the case with your
implementation):

#define MAKERXSTRING(x,c,l) ((x).strptr=(c),(x).strlength=(l))
#define RXNULLSTRING(x) (!(x).strptr)
#define RXSTRLEN(x) ((x).strptr ? (x).strlength : 0UL)
#define RXSTRPTR(x) ((x).strptr)
#define RXVALIDSTRING(x) ((x).strptr && (x).strlength)
#define RXZEROLENSTRING(x) ((x).strptr && !(x).strlength)

Note that these definitions of strings differ from the normal definition
in C programs; where a string is an array of characters, and its length
is implicitly given by a terminating ASCII NUL character. In the RXSTRING
definition, a string can contain any character, including an ASCII NUL, and
the length is explicitly given.

1.69 The RXSYSEXIT structure

This structure is used for defining which system exit handlers are to handle
which system exits. The two relevant datatypes are defined as:

typedef struct {
unsigned char *sysexit_name ;
short sysexit_code ;

} RXSYSEXIT ;

typedef RXSYSEXIT *PRXSYSEXIT ;

In this structure, sysexit_name is a pointer to the ASCII NUL terminated
string containing the name of a prevously registered (and currently active)
system exit handler. The sysexit_code field is main function code of a system
exit.

Regina documentation 76 / 95

The system exits are divided into main functions and subfunctions. An exit is
defined to handle a main function, and must thus handle all the subfunctions
for that main function. All the functions and subfunctions are listed in the
description of the EXIT structure.

1.70 The Subcommand Handler Interface

This sections describes the subcommand handler interface, which ←↩
enables the

application to trap commands in a Rexx script being executed and handle this
commands itself.

What is a Subcommand Handler

The RexxRegisterSubcomExe() function

The RexxRegisterSubcomDll function

The RexxDeregisterSubcom function

The RexxQuerySubcom() function

1.71 What is a Subcommand Handler

A subcommand handler is a piece of code, that is called to handle a command
to an external environment in Rexx. It must be either a subroutine in the
application that started the interpreter, or a subroutine in a dynamic link
library. In any case, when the interpreter needs to execute a command to
an external environment, it will call the subcommand handler, passing the
command as a parameter. Typically, an application will set up a subcommand
handler before starting a Rexx script. That way, it can trap and handle any
command being executed during the course of the script.

Each subcommand handler handles one environment, which is refered to by a
name. It seems to be undefined whether upper and lower case letters differ in
the environment name, so you should assume they differ. Also, there might be
an upper limit for the length of an environment name, and some letters may be
illegal as part of an environment name.

Regina allows any letter in the environment name, except ASCII NUL; and
sets no upper limit for the length of an environment name. However, for
compatibility reasons, you should avoid "uncommon" letters and keep the
length of the name fairly short.

The prototype of a subcommand handler function is:

unsigned long handler(
RXSTRING *command,
unsigned short *flags,

Regina documentation 77 / 95

RXSTRING *returnstring
) ;

After registration, this function is called whenever the application is to
handle a subcommand for a given environment. The value of the paramaters are:

command The command string that is to be executed. This is the resulting
string after the command expression has been evaluated in the Rexx
interpreter. It can not be empty, although it can be a "zero-length-
string".

flags Points to a unsigned short which is to receive the status of the
completion of the handler. This can be one of the three following:
RXSUBCOM_OK, RXSUBCOM_ERROR, or RXSUBCOM_FAILURE. The contents will
be used to determine whether to raise any condition at return of the
subcommand. Do not confuse it with the return value.

returnstring Points to a RXSTRING which is to receive the return value from
the subcommand. Passing the return value as a string makes it possible
to return non-numeric return codes. As a special case, you might set
returnstring.strptr to NULL, instead of specifying a return string of the
ASCII representation of zero.

Note that it is not possible to return "nothing" in a subcommand, since
this is interpreted as zero. Nor is is possible to return a numeric return
code as such; you must convert it to ASCII representation before you return.

The returnstring string will provide a 256 byte array which the programmer
might use if the return data is not longer that that. If that space is not
sufficient, the handler can provide another area itself. In that case, the
handler should not deallocate the default area, and the new area should be
allocated in a standard fashion.

1.72 The RexxRegisterSubcomExe() function

This function is used to register a subcommand handler with the interface.
The subcommand handler must be a procedure located within the code of the
application. After registration, the Rexx interpreter can execute subcommands
by calling the subcommand handler with parameters describing the subcommand.

The prototype for RexxRegisterSubcom() is:

unsigned long RexxRegisterSubcomExe(
signed char* EnvName,
unsigned long (*EntryPoint)(),
unsigned char* UserArea

) ;

All the parameters are input, and their significance are:

EnvName Points to an ASCII NUL terminated character string which defines
the name of the environment to be registered. This is the same name as
the Rexx interpreter uses with the ADDRESS clause in order to select an

Regina documentation 78 / 95

external environment.

EntryPoint Points to the entrypoint of the subcommand handler routine for the
environment to be registered. See the section on Subcommand Handlers for
more information. There is an upper limit for the length of this name.

UserArea Pointer to an 8 byte area of information that is to be associated
with this environment. This pointer can be NULL if no such area is
necessary.

The areas pointed to by EnvName and UserArea are copied to a private area in
the interface, so the programmer may deallocate or reuse the area used for
these parameters after the call has returned.

The RexxRegisterSubcom returns an unsigned long, which carries status
information describing the outcome of the operation. The status will be one
of the RXSUBCOM values:

RXSUBCOM_OK The subcommand handler was sucessfully registered.

RXSUBCOM_DUP The subcommand handler was sucessfully registered. There already
existed another subcommand handler which was registed with RexxReg-
isterSubcomDll(), but this will be shadowed by the newly registered
handler.

RXSUBCOM_NOTREG Due to some error, the handler was not registered. Probably
because a handler for EnvName was already defined at a previous call to
RexxRegisterSubcomExe().

RXSUBCOM_NOEMEM The handler was not registed, due to lack of memory.

RXSUBCOM_BADTYPE Indicates that the handler was not registered, due to one or
more of the parameters having invalid values.

1.73 The RexxRegisterSubcomDll function

This function is used to set up a routine that is located in a module in
a dynamic link library, as a subcommand handler. Some operating systems
don’t have dynamic linking, and thus cannot make use of this facility. The
prototype of this function is:

unsigned int RexxRegisterSubcomDll(
unsigned char *EnvName,
unsigned char *ModuleName,
unsigned char *EntryPoint,
unsigned char *UserArea,
unsigned long DropAuth

) ;

This function is not yet supported by Regina.

Regina documentation 79 / 95

1.74 The RexxDeregisterSubcom function

This function is used to remove a particular environment from the list of
registered environments. The prototype of the function is:

unsigned int RexxDeregisterSubcom(
signed char* EnvName,
signed char* ModuleName

) ;

Both parameters are input values:

EnvName Pointer to ASCII NUL terminated string, which represents the name of
the environment to be removed.

ModuleName Also an ASCII NUL terminated string, which points to the name of
the module containing the subcommand handler of the environment to be
deleted. Not currently in use by Regina.

The list of defined environments is searched, and if an environment match-
ing the one named by the first parameter are found, it is deleted. The
returnvalue will be a RXSUBCOM_ macro, which is OK if the environment was
successfully deleted, NOTREG if the environment was not found, and BADTYPE if
illegal parameters are found.

Most systems that do have dynamic linking have no method for reclaiming the
space used by dynamically linked routines. So, even if you were able to load
a "dll", there are no guarantees that you will be able to unload it.

1.75 The RexxQuerySubcom() function

This function retrieves information about a previously registered subcommand
handler. The prototype of the function is:

unsigned int RexxQuerySubcom(
signed char *EnvName,
signed char *ModuleName,
unsgined short *Flag,
unsigned char *UserWord

) ;

Note that some of the documentation I’ve seen skips the Flag parameter. I
don’t know why, and I don’t know what is correct, but I guess it should be
there. The significance of the parameters are:

EnvName Pointer to an ASCII NUL terminated character string, which names the
subcommand handler about which information is to be returned.

ModuleName Pointer to an ASCII NUL terminated character string, which names
a dynamic link library. Only the named library will be searched for the
subcommand handler named by EnvName. This parameter must be NULL if all
subcommand handlers are to be searched.

Regina documentation 80 / 95

Flag Pointer to a short which is to receive the value RXSUBCOM_OK or RX-
SUBCOM_NOTREG. In fact, this is the same as the return value from the
function.

UserWord Pointer to an area of 8 bytes. The "userarea" of the subcommand
handler is copied to the area pointed to by UserWord. This parameter
might be NULL if the data of the "userarea" is not needed.

Note that the datatype of the UserWord may differ. All seem to agree that
its size is 8 byte, but the datatype might differ between unsigned long
or unsigned char. You would do best in allocating it as 8 byte with good
alignment

The returned value from RexxQuerySubcom() can be one of:

SUBCOM_OK The subcommand handler was found, and the required information has
been returned in the Flag and UserWord variables.

SUBCOM_NOTREG The subcommand handler was not found. The Flag variable will
also be set to this value, and the UserWord variable is not changed.

SUBCOM_BADTYPE One or more of the parameters had illegal values, and the
operation was not carried through.

1.76 Executing Rexx Code

This sections describes the RexxStart() function, which allows the ←↩
ap-

plication to startup the interpreter and make it interpret pieces of Rexx
code.

The RexxStart() function

1.77 The RexxStart() function

This function is used to invoke the Rexx interpreter in order to execute a
piece of Rexx code, which may be located on disk, as a pretokenized macro, or
as ASCII source code in memory.

long RexxStart(
long ArgCount,
struct rxstring *ArgList,
char *ProgramName,
struct rxstring *Instore,
char *EnvName,
long CallType,
struct rxsysexit Exits,
long *ReturnCode,
strcut rxstring *Result

Regina documentation 81 / 95

) ;

Of these parameters, ReturnCode and Result are output-only, while Instore
is both input and output. The rest of the parameters are input-only. The
significance of the parameters are:

ArgCount The number of parameter strings given to the procedure. This is the
number of defined Rexx-strings pointed to by the ArgList parameter.

ArgList Pointer to an array of Rexx-strings, constituting the parameters
to this call to Rexx. The size of this array is give by the parameter
ArgCount. If ArgCount is greater than one, the first and last parameters
are ArgList[0] and ArgList[ArgCount-1]. If ArgCount is 0, the value of
ArgList is irrelevant.

If the strptr of one of the elements in the array pointed to by ArgList
is NULL, that means that this parameter is empty (i.e. unspecified, as
opposed to a string of zero size).

ProgName An ASCII NUL terminated string, specifying the name of the Rexx
script to be executed. The value of Instore will determine whether this
value is interpreted as the name of a (on-disk) script, or a pretokenized
macro. If it refers to a filename, the syntax of the contents of this
parameter depends on the operating system.

Instore Parameter used for storing tokenized Rexx scripts. This parame-
ter might either be NULL, else it will be a pointer to two RXSTRING
structures, the first holding the ASCII version of a Rexx program, the
other holding the tokenized version of that program. See below for more
information about how to use Instore.

EnvName Pointer to ASCII NUL terminated string naming the environment which
is to be the initial current environment when the script is started.
If this parameter is set to NULL, the filetype is used as the initial
environment name. What the filetype is, may depend on your operating
system, but in general it is everything after the last "." in the
filename.

CallType A value describing whether the Rexx interpreter is to be invoked
in command, function or subroutine mode. Actually, this has little
significance. The main difference is that in command mode, only one
parameterstring can be passed, and in function mode, a value must be
returned. In addition, the mode chosen will affect the output of the
PARSE SOURCE instruction in Rexx.

Three symbolic values of integral type are defined, which can be used for
this parameter: RXCOMMAND, RXFUNCTION and RXSUBROUTINE.

SysExists A pointer to an array of exit handlers to be used. If no exit
handlers are to be defined, NULL may be specified. Each element in the
array defines one exit handler, and the element immediately following the
last definition must have a sysexit_code set to RXENDLST.

ReturnCode Pointer to an long where the returncode is stored, provided that
the returned value is numeric, and within the range -(2**15) to 2**15-1.
I don’t know what happens to ReturnCode if either of these conditions
is not satisfied. It probably becomes undefined, which means that it is

Regina documentation 82 / 95

totally useless since the program has to inspect the return string in
order to determine whether ReturnCode is valid. Nor do I know why only 16
bits are used, when a long is 32 bits.

Result Points to a Rexx string into which the result string is written.
The caller may or may not let the strptr field be supplied. If supplied
(i.e. it is non-NULL), that area will be used, else a new area will be
allocated. If the supplied area is used, its size is supposed to be given
by the strlength field. If the size if not sufficient, a new area will
be allocated, by some systemdependent channel (i.e. malloc()), and the
caller must see to that it is properly deallocated (using free().

Note that the ArgCount parameter need not be the same as the ARG() built-in
function would return. Differences will occurr if the last entries in ArgList
are "null strings".

The Instore parameter needs some special attention. It is used to directly
or indirectly specify where to fetch the code to execute. The following
"algorithm" is used to determine what to execute:

* If Instore is NULL, then ProgName names the filename of an on-disk Rexx
script which it to be read and executed.

* Else, if Instore is not NULL, the script is somewhere in memory, and
no reading from disk is performed. If both Instore[0].strptr and
Instore[1].strptr are NULL, then the script to execute is a preloaded
macro which must have been loaded with a call to either RexxAddMacro() or
RexxLoadMacroSpace(); and ProgName is the name of the macro to execute.

* Else, if Instore[1].strptr is non-NULL, then Instore[1] contains the
pretokenized image of a Rexx script, and it is used for the execution.

* Else, if Instore[0].strptr is non-NULL, then Instore[0] contains the
ASCII image of a Rexx script, just as if the script had been read
directly from the disk (i.e. including linefeeds and such). This image is
passed to the interpreter, which tokenizes it, and stores the tokenized
script in the Instore[1] string, and then proceeds to execute that
script. Upon return, the Instore[1] will be set, and can later be used to
reexecute the script without the overhead of tokenizing.

The user is responsible for deallocating any storage used by Instore[1]. Note
that after tokenizing, the sourcecode in Instore[0] is strictly speaking not
needed anymore. It will only be consulted if the user calls the SOURCELINE()
built-in function. It is not an error to use SOURCELINE() if the source is
not present, but nullstrings and zero will be returned.

The valid return values from RexxStart() are:

Negative indicates that a syntax error occurred during interpretation. In
general, you can expect the error value to have the same absolute value
as the Rexx syntax error (but opposite signs, of course).

Zero indicates that the interpreter finished executing the script without
errors.

Positive indicates probably that some problem occurred, that made it impossi-
ble to execute the script, e.g. a bad parameter value. However, I can’t

Regina documentation 83 / 95

find any references in the documentation which states which values it is
supposed to return.

During the course of an execution of RexxStart(), subcommand handlers and
exit handlers might be called. These may call any function in the application
interface, including another invocation of RexxStart().

Often, the application programmer is interested in providing support
simplifing the specification of filenames, like an environment variable
search path or a default file type. The Rexx interface does support a default
file type: .CMD, but the user may not set this to anything else. Therefore,
it is generally up to the application programmer to handle search paths, and
also default file types (unless .CMD is ok).

If the initial environment name (EvnName) is NULL, then the initial environ-
ment during interpretation will be set equal to the file type of the script
to execute. If the script does not have a file type, it is probably set to
some interpreter specific value.

1.78 Variable Pool Interface

This section describes the variable pool part of the application ←↩
interface,

which allows the application programmer to set, retrieve and drop variables
in the Rexx interpreter from the application program. It also allows access
to other information.

The C preprocessor symbol INCL_RXSHV must be defined if the definitions
for the variable pool interface are to be made available when rexxsaa.h is
included.

Symbolic or Direct

The SHVBLOCK structure

Regina Notes for the Variable Pool

The RexxVariablePool() function

1.79 Symbolic or Direct

First, let us define two terms, "symbolic" variable name and "direct"
variable name, which are used in connection with the variable pool.

A symbolic variable name is the name of a variable, but it needs normal-
ization and tail substitution before it names the real variable. The name
foo.bar is a symbolic variable name, and it is transformed by normaliza-
tion, to FOO.BAR, and then by tail substitution to FOO.42 (assuming that the
current value of BAR is 42).

Regina documentation 84 / 95

Normalization is the process of uppercasing all characters in the symbolic
name; and tail substitution is the process of substituting each distinct
simple symbol in the tail for its value.

On the other hand, a direct variable refers directly to the name of the
variable. In a sense, it is a symbolic variable that has already been
normalized and tail substituted. For instance, foo.bar is not a valid direct
variable name, since lower case letters are not allowed in the variable stem.
The direct variable FOO.42 is the same as the variable above. For simple
variables, the only difference between direct and symbolic variable names is
that lower case letters are allowed in symbolic names

Note that the two direct variable names FOO.bar and FOO.BAR refer to
different variables, since upper and lower case letters differ in the tail.
In fact, the tail of a compound direct variable may contain any character,
including ASCII NUL. The stem part of a variable, and all simple variables
can not contain any lower case letters.

As a remark, what would the direct variable FOO. refer to: the stem FOO. or
the compound variable having stem FOO. and a nullstring as tail? Well,
I suppose the former, since it is the more useful. Thus, the latter is
inaccessable as a direct variable.

1.80 The SHVBLOCK structure

All requests to manipulate the Rexx variable pool are controlled by a
structure called SHVBLOCK, having the definition:

typedef struct shvnode {
struct shvnode *shvnext ; /* ptr to next in blk in chain */
RXSTRING shvname ; /* name of variable */
RXSTRING shvvalue ; /* value of variable */
unsigned long shvnamelen ; /* length of shvname.strptr */
unsigned long shvvaluelen ; /* length of shvvalue.strptr */
unsigned char shvcode ; /* operation code */
unsigned char shvret ; /* return code */

} SHVBLOCK ;

typedef SHVBLOCK *PSHVBLOCK ;

The fields shvnext and shvcode are purely input, while shvret is purely
output. The rest of the fields might be input or output, depending on the
requested operation, and the value of the fields. The significance of each
field is:

shvnext One call to RexxVariablePool() may sequentially process many re-
quests. The shvnext field links one request to the next in line. The last
request must have set shvnext to NULL. The requests are handled indi-
vidually and there is no difference between calling RexxVariablePool()
with several requests, and making one call to RexxVariablePool() for each
request.

shvname Contains the name of the variable to operate on, as a RXSTRING. This

Regina documentation 85 / 95

field is only relevant for some requests, and its use may differ.

shvvalue Contains the value of the variable to operate on as a RXSTRING. Like
shvname, this might not be relevant for all types of requests.

shvnamelen The length of the array that shvname.strptr points to. This field
holds the maximum number of characters that shvname.strptr can hold
(i.e. allocated). While shvname.strlength holds the number of characters
that are actually in use (i.e. defined).

shvvaluelen The length of the array that shvvalue.strptr points to. Relates
to shvvalue like shvnamelen relates to shvname.

shvcode The code of operation; decides what type of request to perform. A
list of all the available requests is given below.

shvret A return code describing the outcome of the request. This code is a
bit special. The lower seven bits are flags which are set depending on
whether some condition is met or not. Values above 127 are not used in
this field.

There is a difference between strnamelen and strname.strlength. The former is
the total length of the array of characters pointed to by strname.strptr (if
set). While the latter is the number of these characters that are actually
in use. When a SHVBLOCK is used to return data from RexxVariablePool(),
and a preallocated string space has been supplied, both these will be
used; strname.strptr will be set to the length of the data returned,
while strnamelen is never changed, only read to find the maximum number of
characters that shvname can hold.

Even though shvnamelen is not really needed when shvname is used for input,
it is wise to set it to its proper value (or at least set it to the same as
shvname.strlength). The same applies for shvvalue and shvvaluelen.

The field shvcode can take one of the following symbolic values:

RXSHV_DROP The variable named by the direct variable name shvname is dropped
(i.e. becomes undefined). The fields shvvalue and shvvaluelen do not
matter.

RXSHV_EXIT This is used to set the return value for an external function or
exit handler.

RXSHV_FETCH The value of the variable named by the direct variable name
shvname is retrieved and stored in shvvalue. If shvvalue.strptr is
NULL, the interpreter will allocate sufficient space to store the value
(but it is the responsibility of the application programmer to release
that space). Else, the value will be stored in the area allocated for
shvvalue, and shvvaluelen is taken to be the maximum size of that area.

RXSHV_NEXTV This code is used to retrieve the names and values of all
variables at the current procedure level; i.e. excluding variables
shadowed by PROCEDURE. The name and value of each variable are retrieved
simultaneously into shvname and shvvalue, respectively.

Successive requests for RXSHV_NEXTV will traverse the interpreter’s
internal data structure for storing variables, and return a new pair of

Regina documentation 86 / 95

variable name and value for each request. Each variable that is visible
in the current scope, is returned once and only once, but the order is
indeterministic.

When all available variables in the Rexx interpreter have already been
retrieved, subsequent RXSHV_NEXTV requests will set the flag RXSHV_LVAR
in the shvret field. There are a few restrictions. The traversal will
be reset whenever the interpreter resumes execution, so an incomplete
traversal can not be continued in a later external function, exit
handler, or subcommand handler. Also, any set, fetch or drop operation
will reset the traversal. These restrictions have been added to ensure
that the variable pool is static throughout one traversal.

RXSHV_PRIV Retrieves some piece of information from the interpreter, other
than a variable value, based on the value of the shvname field. The value
is stored in shvvalue as for a "normal" fetch. A list of possible names
is shown below.

RXSHV_SET The variable named by the direct variable name shvname is set to
the value given by shvvalue.

RXSHV_SYFET Like RXSHV_FETCH, except that shvname is a symbolic variable
name.

RXSHV_SYDRO Like RXSHV_DROP, except that shvname is a symbolic variable name.

RXSHV_SYSET Like RXSHV_SET, except that shvname is a symbolic variable name.

One type of request that needs some special attention is the RXSHV_PRIV, which
retrieves a kind of "meta-variable". Depending on the value of shvname, it
returns a value in shvvalue describing some aspect of the interpreter. For
RXSHV_PRIV the possible values for shvname are:

PARM Returns the ASCII representation of the number of parameters to the
currently active Rexx procedure. This must not the same value as the
built-in function ARG() returns, but the number ArgCount in RexxStart.
The two might differ if a routine was called with trailing omitted
parameters.

PARM.n The n must be a positive integer; and the value returned will be the
n’th parameter at the current procedure level. This is not completely
equivalent to the information that the builtin function ARG() returns.
For parameters where ARG() would return the state omitted, the returned
value is a "null string", while for parameters where ARG() would return
the state "existing", the return value will be the parameter string
(which may be a "zero length string".

QUENAME The name of the currently active external data queue. This feature
has not yet been implemented in Regina, which always return "default".

SOURCE Returns the same string that is used in the PARSE SOURCE clause in
Rexx, at the current procedure level of interpretation.

VERSION Returns the same string that is used in the PARSE VERSION clause in
Rexx.

The value returned by a variable pool request is a bit uncommon. A return

Regina documentation 87 / 95

value is computed for each request, and stored in the shvret field. This is
a one-byte field, of which the most significant bit is never set. A symbolic
value RXSHV_OK is defined as the value zero, and the shvret field will be
equal to this name if none if the flags listed below is set. The symbolic
value for these flags are:

RXSHV_BADF The shvcode of this request contained a bad function code.

RXSHV_BADN The shvname field contained a string that is not valid in this
context. What exactly is a valid value depends on whether the operation
is a private, a symbolic variable, or direct variable operation.

RXSHV_LVAR Set if and only if the request was RXSHV_NETXV, and all available
variables have already been retrieved by earlier requests.

RXSHV_MEMFL There was not enough memory to complete this request.

RXSHV_NEWV Set if and only if the referenced variable did not previously have
a value. It can be returned for any set, fetch or drop operation.

RXSHV_TRUNC Set if the retrieved value was truncated when it was copied into
either the shvname or shvvalue fields. See below.

These flags are directrly suitable for logical OR, without shifting, e.g. to
check for truncation and no variables left, you can do something like:

if (req->shvret & (RXSHV_TRUNC _ RXSHV_LVAR))
printf("Truncation or no vars left\n") ;

RXSHV_TRUNC can only occur when the interface is storing a retrieved value
in a SHVBLOCK, and the preallocated space is present, but not sufficiently
large. As described for RXSHV_FETCH, the interpreter will allocate enough
space if shvvalue.strptr is NULL, and then RXSHV_TRUNC will never be set.
Else the space supplied by shvvalue.strptr is used, and shvvaluelen is taken
as the maximum length of shvvalue, and truncation will occur if the supplied
space is too small.

Some implementations will consider SHV_MEMFL to be so severe as to skip the
rest of the operations in a chain of requests. In order to write compatible
software, you should never assume that requests following in a chain after a
request that returned SHV_MEMFL have been performed.

The RXSHV_BADN is returned if the supplied shvname contains a value that is
not legal in this context. For the symbolic set, fetch and drop operations,
that means a symbol that is a legal variable name; both upper and lower case
letters are allowed. For the direct set, fetch and drop operations, that
means a variable name after normalization and tail substitution is not a
legal variable name. For the RXSHV_PRIV, it must be one of the values listed
above.

There is a small subtlety in the above description. TRL states that when a
Rexx assignment assignes a value to a stem variable, all possible variables
having that stem are assigned a new value (independent of whether they had
an explicit value before). So strictly speaking, if a stem is set, then a
RXSHV_NETV sequence should return an (almost) infinite sequence of compound
variables for that stem. Of course, that is completely useless, so you can
assume that only compound variables of that stem given an explicit value

Regina documentation 88 / 95

after the stem was assigned a value will be returned by RXSHV_NEXTV. However,
because of that subtlety, the variables returned by RXSHV_NEXTV for compound
variables might not be representative for the state of the variables.

E.g. what would a sequence of RXSHV_NEXT requests return after the following
Rexx code:

foo. = ’bar’
drop foo.bar

The second statement here, might not change the returned values! After the
first statement, only the stem foo. would probably have been returned, and so
also if all variables were fetched after the second statement.

1.81 Regina Notes for the Variable Pool

Due to the subtleties described at the end of the previous subsection, some
notes on how Regina handles RXSHV_NEXTV requests for compound variables are in
order. The following rules applies:

* Both the stem variable FOO. and the compound variable having FOO. as stem
and a nullstring as tail, are returned with the name of FOO.. In this
situation, a sequence of RXSHV_NEXTV requests may seem to return values
for the same variable twice. This is unfortunate, but it seems to be the
only way. In any case, you’ll have to perform the RXSHV_SYFET in order to
determine which is which.

* If a stem variable has not been assigned a value, its compound variables
are only returned if they have been assigned an explicit value. I.e. com-
pound variables for that stem that have either never been assigned a
value, or have been dropped, will not be reported by RXSHV_NEXTV. There is
nothing strange about this.

* If a stem variable has been assigned a value, then its compound variables
will be reported in two cases: Firstly, the compound variables having
explicitly been assigned a value afterwards. Secondly, the compound
variables which have been dropped afterwards, which are reported to have
their initial value, and the flag RXSHV_NEWV is set in shvret.

It may sound a bit stupid that unset variables are listed when the request is
to list all variables which have been set, but that is about the best I can
do, if I am to stay within the standard definition and return a complete and
exact status of the variable pool.

If the return code from RexxVariablePool() is less than 128, Regina is
guaranteed to have tried to process all requests in the chain. If the return
code is above 127, some requests may not have been processed. Actually, the
number 127 (or 128) is a bit inconvenient, since it will be an problem for
later expansion of the standard. A much better approach would be to have
a preprocessor symbol (say, RXSHV_FATAL, and if the return code from the
RexxVariablePool() function was larger than that, it would be a "direct"
error code, and not a "composite" error code built from the shvret fields
of the requests. The RXSHV_FATAL would then have to be the addition of all the
atomic composite error codes.

Regina documentation 89 / 95

(Warning: author is mounting the soapbox.) The "right" way to fix it,
would be to let RexxVariablePool() set another flag in shvret, a flag called
something like RXSHV_STEM, which is set during a RXSHV_NEXTV if and only if
the value returned is a stem variable. That way, the application programmer
would be able to differ between stem variables and compound variable with a
null string tail.

To handle the other problem with compound variables and RXSHV_NEXTV, I
would have liked to return a "null string" in shvvalue if and only if the
variable is a compound variable having its initial value, and the stem of
that compound variable has been assigned a value. Then, the value of the
compound variable is equal to its name, and is available in the shvname
field.

I’d also like to see that the shvret value contained other information about
the variables, e.g. whether the variable was exposed at the current procedure
level. Of course, Regina does not contain any of these extra, unstandard
features. (Author is dismounting the soapbox.)

When Regina is returning variables with RXSHV_NEXTV, the variables are
returned in the order in which the occurr in the open hashtable in the
interpreter. I.e. the order in which variables belonging to different bins
are returned is consistent, but the order in which variables hashed to the
same bin are returned, is indeterministic. Note that all compound variables
belonging to the same stem are returned in one sequence.

1.82 The RexxVariablePool() function

This function is used to process a sequence of variable requests, and process
them sequentially. The prototype of this function is:

ULONG RexxVariablePool(
SHVBLOCK *Request

) ;

Its only parameter is a pointer to a SHVBLOCK structure, which may be the
first of the linked list. The function performs the operation specified in
each block. If an error should occur, the current request is terminated, and
the function moves on to the next request in the chain.

The result value is a bit peculiar. If the returned value is less than 128,
it is calculated by logically OR’ing the returned shvret field of all the
requests in the chain. That way, you can easily check whether any of the
requests was e.g. skipped because of lack of memory. To determine which
request, you have to interate through the list.

If the result value is higher than 127, it signifies an error. If any of
these values are set, you can not assume that any of the requests have been
processed. The following symbolic name gives its meaning.

RXSHV_NOAVL Means that the interface is not available for this request. This
might occur if the interface was not able to start the interpreter, or if
an operation requested a variable when the interpreter is not currently

Regina documentation 90 / 95

executing any script (i.e. idle and waiting for a script to execute).

1.83 The System Exit Handler Interface

The exit handlers provide a mechanism for governing important ←↩
aspects of

the Rexx interpreter from the application: It can trap situations like the
interpreter writing out text, and then handle them itself, e.g. by displaying
the text in a special window. You can regard system exits as a sort of
"hooks".

The System Exit Handler

List of System Exit Handlers

RXFUN --- The External Function Exit Handler

RXCMD --- the Subcommand Exit Handler

RXMSQ --- the External Data Queue Exit Handler

RXSIO --- the Standard I/O Exit Handler

RXHLT --- the Halt Condition Exit Handler

RXTRC --- the Trace Status Exit Handler

RXINI --- the Initialization Exit Handler

RXTER --- the Termination Exit Handler

1.84 The System Exit Handler

Just like the subcommand handler, the system exit handler is a routine
supplied by the application, and is called by the interpreter when certain
situations occur. These situations are described in detail later. For the
examples below, we will use the output from SAY as an example.

If a system exit handler is enabled for the SAY instruction, it will be
called with a parameter describing the text that is to be written out. The
system exit handler can choose to handle the situation (e.g. by writing the
text itself), or it can ignore it and let the interpreter perform the output.
The return code from the system exit tells the interpreter whether a system
exit handled the situation or not.

A system exit handler must be a routine defined according to the prototype:

signed long my_exit_handler(
signed long ExitNumber,

Regina documentation 91 / 95

signed long Subfunction,
PEXIT ParmBlock

) ;

In this prototype, the type PEXIT is a pointer to a parameter block con-
taining all the parameters necessary to handle the situation. The actual
definition of this parameter block will vary, and is described in detail in
the list of each system exit.

The exits are defined in a two-level hierarchy. The ExitNumber defines
the main function for a system exit, while the Subfunction defines the
subfunction within that main function. E.g. for SAY, the mainfunction will
be RXSIO (the system exit for standard I/O) and the subfunction will be
RXSIOSAY. The RXSIO main function has other subfunctions for handling trace
output, interactive trace input, and PULL input from standard input.

The value returned from the system exit handler must be one of the following
symbolic values:

RXEXIT_HANDLED Signals that the system exit handler took care of the
situation, and that the interpreter should not proceed to do the default
action. For the SAY instruction, this means that the interpreter will not
print out anything.

RXEXIT_NOT_HANDLED Signals that the system exit handler did not take care of
the situation, and the interpreter will proceed to perform the default
action. For the SAY instruction, this means that it must print out the
argument to SAY.

RXEXIT_RAISE_ERROR Signals that the interpreter’s default action for this
situation should not be performed, but instead a SYNTAX condition should
be raised. Don’t get confused by the name, it is not the ERROR condition,
but the SYNTAX condition is raised,using the syntax error "Failure in
system service" (normally numbered 48).

In addition to returning information as the numeric return value, information
may also be returned by setting variables in the parameter block. For
instance, if the system exit is to handle interactive trace input, that is
how it will supply the interpreter with the input string.

It is a good and disiplined practice to let your exit handlers start by
verifying the ExitNumber and Subfunction codes, and immediately return
RXEXIT_NOT_HANDLED if it does not recognize both of them. That way, your
application will be upwards compatible with future interpreters which might
have more subfunctions for any given main function.

1.85 List of System Exit Handlers

1.86 RXFUN --- The External Function Exit Handler

1.87 RXCMD --- the Subcommand Exit Handler

Regina documentation 92 / 95

The main function code for this exit handler is given by the symbolic name
RXCMD. It is called whenever the interpreter is about to call a subcommand,
i.e. a command to an external environment. It has only one subfunction:
RXCMDHST.

The ParmBlock parameter for this subfunction has the following definition:

typedef struct {
typedef struct {

unsigned int rxfcfail:1 ;
unsigned int rxfcerr:1 ;

} rxcmd_flags ;
unsigned char *rxcmd_address ;
unsigned short rxcmd_addressl ;
unsigned char *rxcmd_dll ;
unsigned short rxcmd_dll_len ;
RXSTRING rxcmd_command ;
RXSTRING rxcmd_retc ;

} RXCMDHST_PARM ;

The significance of each variable is:

rxcmd_flags.rxfcfail If this flag is set, the interpreter will raise a
FAILURE condition at the return of the exit handler.

rxcmd_flags.rxfcerr Like the previous, but the ERROR condition is raised
instead.

rxcmd_address Points to a character array containing the name of the
environment to which the command normally would be sent.

rxcmd_addressl Holds the length of rxcmd_address. Note that the last
character is the letter "ell", not the number one.

rxcmd_dll Defines the name for the DLL which is to handle the command. I’m
not sure what this entry is used for. It is not currently in use for
Regina.

rxcmd_dll_len Holds the length of rxcmd_dll. If this length is set to zero,
the subcommand handler for this environment is not a DLL, but an exe
handler.

rxcmd_command Holds the command string to be executed, including command name
and parameters.

rxcmd_retc Set by the exit handler to the string which is to be considered
the return code from the command. It is assigned to the special vari-
able RC at return from the exit handler. The user is responsible for
allocating space for this variable. I have no clear idea what happens if
rxcmd_retc.strptr is set to NULL; it might set RC to zero, to the null
string, or even drop it.

It seems that this exit handler is capable of raising both the ERROR and the
FAILURE conditions simultaneously. I don’t know whether that is legal, or
whether only the FAILURE condition is raised, since the ERROR condition is a
sort of "subset" of FAILURE.

Regina documentation 93 / 95

Note that the return fields of the parameter block are only relevant if
the value RXEXIT_HANDLED was returned. This applies to the rxcmd_flags and
rxcmd_retc fields of the structure.

1.88 RXMSQ --- the External Data Queue Exit Handler

1.89 RXSIO --- the Standard I/O Exit Handler

The main code for this exit handler has the symbolic value RXSIO. There are
four subfunctions:

RXSIODTR Called whenever the interpreter needs to read a line from the user
during interactive tracing. Note the difference between this subfunction
and RXSIOTRD.

RXSIOSAY Called whenever the interpreter tries to write something to standard
output in a SAY instruction, even a SAY instruction without a parameter.

RXSIOTRC Called whenever the interpreter tries to write out debugging
information, e.g. during tracing, as a trace back, or as a syntax error
message.

RXSIOTRD Called whenever the interpreter need to read from the standard input
stream during a PULL or PARSE PULL instruction. Note that it will not be
called if there is sufficient data on the stack to satisfy the operation.

Note that these function are only called for the exact situations that are
listed above. E.g. the RXSIOSAY is not called during a call to the Rexx
built-in function LINEOUT() that writes to the default output stream. TRL
says that SAY is identical to calling LINEOUT() for the standard output
stream, but SAA API still manages to see the difference between stem
variables and compound variables with a "zero-length-string" tail. Please
bear with this inconsistency.

Depending on the subfunction, the ParmBlock parameter will have four only
slightly different definitions. It is kind of frustrating that the ParmBlock
takes so many different datatypes, but it can be handled easily using unions,
see a later section. The definitions are:

typedef struct {
RXSTRING rxsiodtr_retc ; /* the interactive trace input */

} RXSIODTR_PARM ;

typedef struct {
RXSTRING rxsio_string ; /* the SAY line to write out */

} RXSIOSAY_PARM ;

typedef struct {
RXSTRING rxsio_string ; /* the debug line to write out */

} RXSIOTRC_PARM ;

typedef struct {

Regina documentation 94 / 95

RXSTRING rxsiotrd_retc ; /* the line to read in */
} RXSIOTRD_PARM ;

In all of these, the RXSTRING structure either holds the value to be written
out (for RXSIOSAY and RXSIOTRC), or the value to be used instead of reading
standard input stream (for RXSIOTRD and RXSIODTR). Note that the values set
by RXSIOTRD and RXSIODTR are ignored if the exit handler does not return the
value RXEXIT_HANDLED.

Any end-of-line marker are stripped off the strings in this context. If
the exit handler writes out the string during RXSIOSAY or RXSIOTRC, it must
supply any end-of-line action itself. Similarily, the interpreter does not
expect a end-of-line marker in the data returned from RXSIODTR and RXSIOTRD.

The space used to store the return data for the RXSIODTR and RCSIOTRD
subfunctions, must be provided by the exit handler itself, and the space
is not deallocated by the interpreter. The space can be reused by the
application at any later time. The space allocated to hold the data given by
the RXSIOSAY and RXSIOTRC subfunctions, will be allocated by the interpreter,
and must neither be deallocated by the exit handler, nor used after the exit
handler has terminated.

1.90 RXHLT --- the Halt Condition Exit Handler

1.91 RXTRC --- the Trace Status Exit Handler

1.92 RXINI --- the Initialization Exit Handler

RXTER and this exit handler are a bit different from the others. RXINI
provides the application programmer with a method of getting control
before the execution of the script starts. Its main purpose is to enable
manipulation of the variable pool in order to set up certain variables before
the script starts, or set the trace mode.

It has only one subfunction, RXINIEXT, called once duing each call to
RexxStart(): just before the first Rexx statement is interpreted. Variable
manipulations performed during this exit will have effect when the script
starts.

As there is no information to be communicated during this exit, the value
of ParmBlock is undefined. It makes no difference whether you return
RXEXIT_HANDLED or RXEXIT_NOT_HANDLED, since there is no situation to handle.

1.93 RXTER --- the Termination Exit Handler

This exit resembles RXINI. Its sole subfunction is RXTEREXT, which is called
once, just after the last statement of the Rexx script has been interpreted.
The state of all variables are intact during this call; so it can be used to
retrieve the values of the variables at the exit of a script. (In fact, that

Regina documentation 95 / 95

is the whole purpose of this exit handler.)

Like RXINI, there is no information to be communicated during the exit,
so ParamBlock is undefined in this call. And also like RXINI, it is more
of a hook than an exit handler, so it does not matter whether you return
RXEXIT_HANDLED or RXEXIT_NOT_HANDLED.

	Regina documentation
	Regina documentation
	 Table Of Contents
	 Chapter 1
	 Definitions
	 Clauses
	 Chapter 2
	 General Information
	 The Syntax Format
	 Precision and Normalization
	 Standard Parameter Names
	 Error Messages
	 Possible System Dependencies
	 Blanks vs. Spaces
	 Rexx Standard Builtin Functions
	 Implementation specific documentation for Regina
	 Deviations from the Standard
	 Interpreter Internal Debugging Functions
	 Rexx UNIX Interface Functions
	 Chapter 3
	 What are Conditions
	 What Do We Need Conditions for?
	 Terminology
	 The Mythical Standard Condition
	 Information Regarding Conditions (data structures)
	 How to Set up a Condition Trap
	 How to Raise a Condition
	 How to Trigger a Condition Trap
	 Trapping by Method SIGNAL
	 Trapping by Method CALL
	 The Current Trapped Condition
	 The Real Conditions
	 The SYNTAX condition
	 The HALT condition
	 The ERROR condition
	 The FAILURE condition
	 The NOVALUE condition
	 The NOTREADY condition
	 Further Notes on Conditions
	 Conditions under Language Level 3.50
	 Pitfalls when Using Condition Traps
	 The Correctness of this Description
	 Conditions in Regina
	 How to Raise the HALT condition
	 Extended builtin functions
	 Extra Condition in Regina
	 Various Other Existing Extensions
	 Possible Future extensions
	 Chapter 4
	 Rexx's Notion of a
	 Positioning within a File
	 Persistent and Transient Streams
	 Errors: Discovery, Handling and Recovery
	 Naming Files
	 Non-standard Operations on Files
	 Where Implementations are Allowed to Differ
	 Where Implementations might Differ anyway
	 Typical Problems when Handling Files
	 The Stream was Renamed During Execution
	 LINES() and CHARS() are Inaccurate
	 If You don't Close Your Files
	 Stream I/O in Regina
	 Chapter 5
	 Overview of functions in SAA
	 Include Files and Libraries
	 Preprocessor Symbols
	 Allocating and Deallocating Space
	 Datastructures
	 The RXSTRING structure
	 The RXSYSEXIT structure
	 The Subcommand Handler Interface
	 What is a Subcommand Handler
	 The RexxRegisterSubcomExe() function
	 The RexxRegisterSubcomDll function
	 The RexxDeregisterSubcom function
	 The RexxQuerySubcom() function
	 Executing Rexx Code
	 The RexxStart() function
	 Variable Pool Interface
	 Symbolic or Direct
	 The SHVBLOCK structure
	 Regina Notes for the Variable Pool
	 The RexxVariablePool() function
	 The System Exit Handler Interface
	 The System Exit Handler
	 List of System Exit Handlers
	 RXFUN --- The External Function Exit Handler
	 RXCMD --- the Subcommand Exit Handler
	 RXMSQ --- the External Data Queue Exit Handler
	 RXSIO --- the Standard I/O Exit Handler
	 RXHLT --- the Halt Condition Exit Handler
	 RXTRC --- the Trace Status Exit Handler
	 RXINI --- the Initialization Exit Handler
	 RXTER --- the Termination Exit Handler

